Disagreeing with “Our Mathematical Universe”

My wife and I have been listening to Max Tegmark’s book “Our Mathematical Universe: My Quest for the Ultimate Nature of Reality” as an audiobook during our trips to and from work lately.

When he hit his chapter explaining Quantum Mechanics and his “Level 3 multiverse” I found that I profoundly disagree with this guy. It’s clear that he’s a grade A cosmologist, but I think he skirts dangerously close to being a quantum crank when it comes to multi-universe theory. I’ve been disagreeing with his take for the last couple driving sessions and I will do my best to try to sum for memory the specific issues that I’ve taken. Since this is a physicist making these claims, it’s important that I be accurate about my disagreement. In fact, I’ll start with just one and see whether I feel like going further from there…

The first place where I disagree is where he seems to show physicist Dunning-Kruger when regarding other fields in which he is not an expert. Physicists are very smart people, but they have a nasty habit of overestimating their competence in neighboring sciences… particularly biology. I am in a unique position in that I’ve been doubly educated; I have a solid background in biochemistry and cell molecular biology in addition to my background in quantum mechanics. I can speak at a fair level on both.

Professor Tegmark uses an anecdote (got to be careful here; anecdotes inflate mathematical imprecision) to illustrate how he feels quantum mechanics connects to events at a macroscopic level in organisms. There are many versions, but essentially he says this: when he is biking, the quantum mechanical behavior of an atom crossing through a gated ion channel in his brain affects whether or not he sees an oncoming car, which then may or may not hit him. By quantum mechanics, whether he gets hit or not by the car should be a superposition of states depending on whether or not the atom passes through the membrane of a neuron and enables him to have the thought to save himself or not. He ultimately elaborates this by asserting that “collapse free” quantum mechanics states that there is one universe where he saved himself and one universe where he didn’t… and he uses this as a thought experiment to justify what he calls a “level 3” multiverse with parallel realities that are coherent to each other but differ by the direction that a quantum mechanical wave function collapse took.

I feel his anecdote is a massive oversimplification that more or less throws the baby out with the bath water. Illustration of the quantum event in question is “Whether or not a calcium ion in his brain passes through a calcium gate” as connected to the macroscopic biological phenomenon of “whether he decides to bike through traffic” or alternatively “whether or not he decides to turn his eye in the appropriate direction” or alternatively “whether or not he sees a car coming when he starts to bike.”

You may notice this as a variant of the Schrodinger “Cat in a box” thought experiment. In this experiment, a cat is locked in a perfectly closed box with a sample of radioactive material and a Geiger counter that will dump acid onto the cat if it detects a decay; as long as the box is closed, the cat will remain in some superposition of states, conventionally considered “alive” or “dead” as connected with whether or not the isotope emitted a radioactive decay or not. I’ve made my feelings of this thought experiment known before here.

The fundamental difficulty comes down to what the superposition of states means when you start connecting an object with a very simple spectrum of states, like an atom, to an object with a very complex spectrum of states, like a whole cat. You could suppose that the cat and the radioactive emission become entangled, but I feel that there’s some question whether you could ever actually know whether or not they were entangled simply because you can’t discretely figure out what the superposition should mean: alive and dead for the cat are not a binary on-off difference from one another as “emitted or not” is for the radioactive atom. There are a huge number of states the cat might occupy that are very similar to one another in energy and the spectrum spanning “alive” to “dead” is so complicated that it might as well just be a thermal universe. If the entanglement actually happened or not, in this case, the classical thermodynamics and statistical mechanics should be enough to tell you in classically “accurate enough” terms what you find when you open the box. If you wait one half-life of a bulk radioactive sample, when you open the box, you’ll find a cat that is burned by acid to some degree or another. At some point, quantum mechanics does give rise to classical reality, but where?

The “but where” is always where these arguments hit their wall.

In the anecdote Tegmark uses, as I’ve written above, the “whether a calcium ion crossed through a channel or not” is the quantum mechanical phenomenon connected to “whether an oncoming car hit me or not while I was biking.”

The problem that I have with this particular argument is that it loses scale. This is where quantum flapdoodle comes from. Does the scale make sense? Is all the cogitation associated with seeing a car and operating a bike on the same scale as where you can actually see quantum mechanical phenomena? No, it isn’t.

First, all the information coming to your brain from your eyes telling you that the car is present originate from many many cells in your retina, involving billions of interactions with light. The muscles that move your eyes and your head to see the car are instructed from thousands of nerves firing simultaneously and these nerves fire from gradients of Calcium and other ions… molar scale quantities of atoms! A nerve doesn’t fire or not based on the collapse of possibilities for a single calcium ion. It fires based on thermodynamic quantities of ions flowing through many gated ion channels all at once. The net effect of one particular atom experiencing quantum mechanical ambivalence is swamped under statistically large quantities of atoms picking all of the choices they can pick from the whole range of possibilities available to them, giving rise to the bulk phenomenon of the neuron firing. Let’s put it this way: for the nerve to fire or not based on quantum mechanical superposition of calcium ions would demand that the nerve visit that single thermodynamic state where all the ions fail to flow through all the open ion gates in the membrane of the cell all at once… and there are statistically few states where this has happened compared to the statistically many states where some ions or many ions have chosen to pass through the gated pore (this is what underpins the chemical potential that drives the functioning of the cell). If you bothered to learn any stat mech at all, you would know that this state is such a rare one that it would probably not be visited even once in the entire age of the universe. Voltage gradients in nerve cells are established and maintained through copious application of chemical energy, which is truthfully constructed from quantum mechanics and mainly expressed in bulk level by plain old classical thermodynamics. And this is merely the state of whether a single nerve “fired or not” taken in aggregate with the fact that your capacity for “thought” doesn’t depend enough on a single nerve that you can’t lose that one nerve and fail to think –if a single nerve in your retina failed to fire, all the sister nerves around it would still deliver an image of the car speeding toward you to your brain.

Do atoms like a single calcium ion subsist in quantum mechanical ambivalence when left to their own devices? Yes, they do. But, when you put together a large collection of these atoms simultaneously, it is physically improbable that every single atom will make the same choice all at once. At some point you get a bulk thermodynamic behavior and the decision that your brain makes are based on bulk thermodynamic behaviors, not isolated quantum mechanical events.

Pretending that a person made a cognitive choice based on the quantum mechanical outcomes of a single atom is a reductio ad absurdum and it is profoundly disingenuous to start talking about entire parallel universes where you swerved right on your bike instead of left based on that single calcium atom (regardless of how liberally you wave around the butterfly effect). The nature of physiology in a human being at all levels is about biasing fundamentally random behavior into directed, ordered action, so focusing on one potential speck of randomness doesn’t mean that the aggregate should fail to behave as it always does. All the air in the room where you’re standing right now could suddenly pop into the far corner leaving you to suffocate (there is one such state in the statistical ensemble), but that doesn’t mean that it will…. closer to home, you might win a $500 million Power Ball Jackpot, but that doesn’t mean you will!

I honestly do not know what I think about the multiverse or about parallel universes. I would say I’m agnostic on the subject. But, if all parallel universe theory is based on such breathtaking Dunning-Kruger as Professor Tegmark exhibits when talking about the connection between quantum mechanics and actualization of biological systems, the only stance I’m motivated to take is that we don’t know nearly enough to be speculating. If Tegmark is supporting multiverse theory based on such thinking, he hasn’t thought about the subject deeply enough. Scale matters here and neglecting the scale means you’re neglecting the math! Is he neglecting the math elsewhere in his other huge, generalizing statements? For the scale of individual atoms, I can see how these ideas are seductive, but stretching it into statistical systems is just wrong when you start claiming that you’re seeing the effects of quantum mechanics at macroscopic biological levels when people actually do not. It’s like Tegmark is trying to give Deepak Chopra ammunition!

Ok, just one gripe there. I figure I probably have room for another.

In another series of statements that Tegmark makes in his discussion of quantum mechanics, I think he probably knows better, but by adopting the framing he has, he risks misinforming the audience. After a short discussion of the origins of Quantum Mechanics, he introduces the Schrodinger Equation as the end-all, be-all of the field (despite speaking briefly of Lagrangian path integral formalism elsewhere). One of the main theses of his book is that “the universe is mathematical” and therefore the whole of reality is deterministic based on the predictions of equations like Schrodinger’s equation. If you can write the wave equation of the whole universe, he says, Schrodinger’s equation governs how all of it works.

This is wrong.

And, I find this to miss most of the point of what physics is and what it actually does. Math is valuable to the physics, but one must always be careful that the math not break free of its observational justification. Most of what physics is about is making measurements of the world around us and fitting those measurements to mathematical models, the “theories” (small caps) provided to us by the Einsteins and the Sheldon Coopers… if the fit is close enough, the regularity of a given equation will sometimes make predictions about further observations that have not yet been made. Good theoretical equations have good provenance in that they predict observations that are later made, but the opposite can be said for bad theory, and the field of physics is littered with a thick layer of mathematical theories which failed to account for the observations, in one way or another. The process of physics is a big selection algorithm where smart theorists write every possible theory they can come up with and experimentalists take those theories and see if the data fit to them, and if they do accommodate observation, such a theory is promoted to a Theory (big caps) and is explored to see where its limits exist. On the other hand, small caps “theories” are discarded if they don’t accommodate observation, at which point they are replaced by a wave of new attempts that try to accomplish what the failure didn’t. As a result, new theories fit over old theories and push back predictive limits as time goes on.

For the specific example of Schrodinger’s equation, the mathematical model that it offers fits over the Bohr model by incorporating deBroglie’s matter wave. Bohr’s model itself fit over a previous model and the previous models fit over still earlier ideas had by the ancient Greeks. Each later iteration extends the accuracy of the model, where the development is settled depending on whether or not a new model has validated predictive power –this is literally survival of the fittest applied to mathematical models. Schrodinger’s equation itself has a limit where its predictive power fails: it cannot handle Relativity except as a perturbation… meaning that it can’t exactly predict outcomes that occur at high speeds. The deficiencies of the Schrodinger equation are addressed by the Klein-Gordon equation and by the Dirac equation and the deficiencies of those in turn are addressed by the path integral formalisms of Quantum Field Theory. If you knew the state equation for the whole universe, Schrodinger’s equation would not accurately predict how time unfolds because it fails to work under certain physically relevant conditions. The modern Quantum Field Theories fail at gravity, meaning that even with the modern quantum, there is no assured way of predicting the evolution of the “state equation of the universe” even if you knew it. There are a host of follow-on theories, String Theory, Quantum loop gravity and so and so forth that vy for being The Theory That Fills The Holes, but, given history, probably will only extend our understanding without fully answering all the remaining questions. That String Theory has not made a single prediction that we can actually observe right now should be lost on no one –there is a grave risk that it never will. We cannot at the moment pretend that the Schrodinger equation perfectly satisfies what we actually know about the universe from other sources.

It would be most accurate to say that reality seems to be quantum mechanical at its foundation, but that we have yet to derive the true “fully correct” quantum theory. Tegmark makes a big fuss about trying to explain “wave function collapse” doesn’t fit within the premise of Schrodinger’s equation but that the equation could hold as good quantum regardless if a “level three multiverse” is real. The opposite is also true: we’ve known Schrodinger’s equation is incomplete since the 1930s, so “collapse” may simply be another place where it’s incomplete that we don’t yet know why. A multiverse does not necessarily follow from this. Maybe pilot wave theory is correct quantum, for all I know.

It might be possible to masturbate over the incredible mathematical regularity of physics in the universe, but beware of the fact that it wasn’t particularly mathematical or regular until we picked out those theories that fit the universe’s behavior very closely. Those theories have predictive power because that is the nature of the selection criteria we used to find them; if they lacked that power, they would be discarded and replaced until a theory emerged meeting the selection criteria. To be clear, mathematical models can be written to describe anything you want, including the color of your bong haze, but they only have power because of their self consistency. If the universe does something to deviate from what the math says it should, the math is simply wrong, not the universe. Every time you find neutrino mass, God help your massless neutrino Standard Model!

Wonderful how the math works… until it doesn’t.

Edit 12-19-17:

We’re still listening to this book during our car trips and I wanted to point out that Tegmark uses an argument very similar to my argument above to suggest why the human brain can’t be a quantum computer. He approaches the matter from a slightly different angle. He says instead that a coherent superposition of all the ions either inside or outside the cell membrane is impossible to maintain for more than a very very short period of time because eventually something outside of the superposition would rapidly bump against some component of the superposition and that since so many ions are involved, the frequency of things bumping on the system from the outside and “making a measurement” becomes high. I do like what he says here because it starts to show the scale that is relevant to the argument.

On the other hand, it still fails to necessitate a multiverse. The simple fact is that human choice is decoupled from the scale of quantum coherence.

Edit 1-10-17:

As I’m trying desperately to recover from stress in the process of thesis writing, I thought I would add a small set of thoughts in this subject in an effort to defocus and defrag a little. My wife and I have continued to listen to this book and I think I have another fairly major objection with Tegmark’s views.

Tegmark lives in a version of quantum mechanics that fetishizes the notion of wave function collapse where he views himself as going against the grain by offering an alternative where collapse does not have to happen.

For a bit of context, “collapse” is a side effect of the Copenhagen convention of quantum mechanics. In this way of looking at the subject, the wave function will remain in superposition until something is done to determine what state the wave function is in… at this point, the wave function will cease to be coherent and will drop into some allowed eigenstate, after which it will remain in that eigenstate. This is a big, dominant part of quantum mechanics, but I would suggest that it misses some of the subtlety of what actually happens in quantum mechanics by trying to interpret, perhaps wrongly, what the wave function is.

Fact of the matter is that you can never observe a wave function. When you actually look at what you have, you only ever find eigenstates. But, there is an added subtlety to this. If you make an observation, you find an object somewhere, doing something. That you found the object is indisputable and you can be pretty certain what you know about it at the time slice of the observation. Unfortunately, you only know exactly what you found; from this –directly– you actually have no idea either what the wave function was or even really what the eigenstates are. Location is clearly an eigenstate of the position operator, as quantum mechanics operates, but from finding a particle “here” you really don’t actually know what the spectrum of locations it was potentially capable of occupying actually were. In order to learn this, the experiment which is performed is to set up the situation in a second instance, put time in motion and see that you find the new particle ending up “there,” then to tabulate the results together. This is repeated a number of times until you get “here,” “there” and “everywhere.” Binning each trial together, you start to learn a distribution of how the possibilities could have played out. From this distribution, you can suddenly write a wave function, which tells the probability of making some observation across the continuum of the space you’re looking at… the wave function says that you have “this chance of finding the object ‘here’ or ‘there’.”

The wave function, however you try to pack it, is fundamentally dependent on the numerical weight of a statistically significant number of observations. From one observation, you can never know anything about the wave function.

The same thing holds true for coherence. If you make one observation, you find what you found that one time; you know nothing about the spectrum of possibilities. For that one hit, the particle could have been in coherence, or it could have been collapsed to an eigenstate. You don’t know. You have to build up a battery of observations, which gives you the ability to say “there’s a xx% chance this observation and that observation were correlated, meaning that coherence was maintained to yy degree.”

This comes back to Feynman’s old double slit experiment anecdote. For one BB passing through the system and striking the screen, you only know that it did, and not anything about how it did. The wave function written for the circumstances of the double slit provides a forecast of what the possible outcomes of the experiment could be. If you start measuring which slit a BB went through, the system becomes fundamentally different based upon how the observation is made and different things are knowable, giving the chance that the wave function will forecast different statistical outcomes. But, you cannot know this unless you make many observations in order to see the difference. If you measure the location of 1 BB at the slit and the location of 1 BB at the screen, that’s all you know.

In this way, the wave function is a bulk phenomenon, a beast of statistical weight. It can tell you observations that you might find… if you know the set up of the system. An interference pattern at the screen tells that the history was muddy and that there are multiple possible histories that could explain an observation at the screen. This doesn’t mean that a BB went through both slits, merely that you don’t know what history brought it to the place where it is. “Collapse” can only be known after two situations have been so thoroughly examined that the chances for the different outcomes are well understood. In a way, it is as if the phenomenon of collapse is written into the outcome of the system by the set-up of the experiment and that the types of observations that are possible are ordained before the experiment is carried out. In that way, the wave function really is basically just a forecast of possible outcomes based on what is known about a system… sampling for the BB at the slit or not, different information is present about the system, creating different possible outcomes, requiring the wave function to make a different forecast that includes that something different is known about the system. The wave function is something that never actually exists at all except to tell you the envelope of what you can know at any given time, based upon how the system is different from one instance to the next.

This view directly contradicts the notions in Tegmark’s book that individual quantum mechanical observations at “collapse” allow for two universes to be created based upon whether the wave function went one way or another. On a statistical weight of one, it cannot be known whether the observed outcome was from a collection of different possibilities or not. The possible histories or futures are unknown on a data point of one; that one is what it is and it can’t be known that there may have been other choices without a large conspiracy to know what other choices could have happened and what that gives you is the ability to say is “there’s a sixty percent chance this observation matches this eigenstate and a forty percent chance it’s that one.” Which is fundamentally not the same as the decisiveness which would be required for a collapse of one data point to claim “we’re definitely in the universe where it went through the right slit.”

I guess I would say this: Tegmark’s level 3 multiverse is strongly contradicted by the Uncertainty Principle. Quantum mechanics is structurally based on indecisiveness, while Tegmark’s multiverse is based on a clockwork decisiveness. Tegmark is saying that the history of every particle is always known.

This is part of the issue with quantum computers: the quantum computer must run its processing experiment repeatedly, multiple times, in order to establish knowledge about coherence in the system. On a sampling of one, the wave function simply does not exist.

Tegmark does this a lot. He routinely puts the cart ahead of the horse; saying that math implies the universe rather than that math describes the universe (Tegmark: Math therefore Universe. Me: Universe, therefore Math). The universe is not math; math is simply so flexible that you can pick out descriptions that accurately tell what’s going on in the universe (until they don’t). For all his cherry picking the “mathematical regularity of the universe,” Tegmark quite completely turns his eye to where math fails to work: most problems in quantum mechanics are not exactly solvable and most quantum advancement is based strongly on perturbation… that is approximations and infinite expansions that are cranked through computers to churn out compact numbers that are close to what we see. In this, the math that ‘works’ is so overloaded with bells and whistles to make it approach the actual observational curve that one can only ever say that the math is adopting the form of the universe, not that the universe arises from the math.

Advertisements

Flat Earth “Research”

You no doubt heard about this fellow in the last week with the steampunk rocket with “Flat Earth Research” written on the side. In my opinion, he was pretty clearly trolling the media; not much likelihood of resolving any issues about the shape of the Earth if the peak altitude of your rocket is only a fraction of the altitude of a commercial airline jet. He said a number of antiscience things and sort of repurposed mathematical formulae for aeronautics and fluid mechanics as “not science” as if physics is anything other than physics. The guy claimed he was using the flight as a test bed for a bigger rocket and wanted to create a media circus to announce his run for a seat in the California legislature. Not bad for a limo driver, I give him that.

Further in the background, I think it’s clear he was just after a publicity stunt; his do-it-yourself rocket cost a great deal of money, and his conversion to flat eartherism obviously helped to pay the bill. It really did make me wonder what exactly flat earthers think “research” is given that they were apparently willing to pony up a ton of money for this rocket, which won’t go high enough to resolve anything an airline ticket won’t resolve better.

My general feelings about flat earth nonsense are well recorded here and here.

A part of why I decided to write anything about this is that the guy wants to run for congress in California. This should be concerning to everyone: someone who is trusted to make decisions for a whole community had better be doing so based on a sound understanding of reality. Higher positions currently filled in the Federal government not withstanding, a disconnect seems to be forming in our self-governance which is allowing people to unhinge their decision-making processes from what is actually known about the world. I think that’s profoundly dangerous.

In my opinion also, this is not to heap blame on those who actually hold office now, but on everybody who elected to put them there. Our government is both by the people and for the people: anybody in power is at some level representative of the electorate, possessing all the same potentially fatal flaws. If you want to bitch about the government, the place to start is society itself.

Now, Flat Eartherism is one of those pastimes that is truly incredibly past its time. There are two reasons it subsists; the first is people trolling other people for kicks online, while the second is that some people are so distrusting and conspiracy-minded that they’re willing to believe just about anything if it feeds into their biases. There are some people who truly believe it. A part of why people have the ability to believe the conspiracy theories is that what they consider visual evidence of the Earth’s roundness comes through sources that they define as questionable because of their connection to ostensibly corrupt power –NASA, for all its earnest effort to keep space science accessible to the common man, has not been perfect. Further, not just anybody can go to a place where the roundness of the Earth is unambiguously visible given exactly how hard it is to get to very high altitudes over Earth in the first place. For all of SpaceX’s success, space flight still isn’t a commodity that everyone can sample. Travel into space is held under lock and key by the few and powerful.

Knowing and having worked a bit around scientists associated with space flight projects, I understand the mindset of the scientists, and it offends me very deeply to see their trustworthiness questioned when I know that many of them value honesty very highly. Part of why the conspiracy garbage circulates at all is because our society is so big that “these people” never meet “those people” and the two sides have little chance of bumping into one another. It’s easy to malign people who are faceless and its really easy to accuse someone of lying if they aren’t present to defend themselves. That doesn’t mean that either is due. This comes back to my old argument about the constitutionally defended right to spout lies in the form of “Freedom of Speech” being a very dangerous social norm.

Now, that said, another of the primary reasons I decided to write this post is because I saw a Youtube video of Eddie Bravo facing down two scientists and more or less humiliating them over their inability to defend “round eartherism.”

You may or may not know of him, but Eddie Bravo is a modern hero to the teenage boy; he’s another of these podcaster/micro-celebrity types who is widely accessible with a few keystrokes in an environment with basically zero editorial content control. He’s a visible face of the UFC (Ultimate Fighting Challenge) movement along with Joe Rogan. He’s attained wide acclaim for being a “Gracie Killer,” which is a big thing if you know anything about UFC… the Gracies being the renown Brazilian Jiu-Jutsu family who dominated the grappling world early in the UFC and brought the art of Jiu-Jutsu in its Brazilian form to the whole world. From this little history, you can easily guess why Bravo is a teenage boy hero: he’s a brash, cocky bad ass. He’s a world class Jiu-Jutsu fighter, hands down. Unfortunately, as with many celebrities, his Jiu-Jutsu street cred affords him the opportunity to open his mouth about whatever he feels like. Turns out he’s a bit of a crank magnet too, including being a flat earther.

To begin with, I don’t believe Mr. Bravo –or any other crank, for that matter– is stupid. I’ve long since seen that great intelligence can exist in people who for one reason or another don’t know better or choose not to “believe” in something for whatever reason. If he weren’t talented at some level, he wouldn’t be a hard enough worker to develop the acclaim he has attained. But, he conflates being able to shout over whoever he feels like to being able to beat them, which absolutely isn’t true in an intellectual debate.

In the Youtube clip I saw, Mr. Bravo confronts two scientists in a room full of people friendly to him. The first scientist is brought to the forefront where he introduces himself as an “Earth Scientist”… much to the rolling eyes and derision of the audience. Eddie Bravo then demands that he give the one bit of evidence which proves that the “Earth is round.” Put on the spot, this poor fellow then makes the mistake of trying to tell Mr. Bravo that science is a group of people who specialize in many different disciplines, across many different lines of research, and fails to provide Mr. Bravo with a direct answer to his question. It’s true that science is distributed, but by not answering the question, he gives the appearance of not having the answer and Eddie Bravo was completely aware that he’d said nothing to the point! When the second scientist comes forward, Eddie Bravo demands (a poorly worded demand at that, in my opinion) that since most people hold the disappearance of a ship’s mast over the horizon as the “proof” that the world is round, “why was it that people are able to take pictures of ships after they’re supposedly over the horizon?” This second scientist really did step up, I think: he tried to explain that light doesn’t necessarily travel in straight lines (which is true) and that the atmosphere can work like a fiber optic to bring images around the curve of the earth. Mr. Bravo derided this explanation, basically saying “Oh, please, that’s garbage, everybody knows you can’t see around corners.” And, at a superficial level, this will be regarded as a true response, despite the fact that the numbers always fall out the bottom of the strainer in a rhetorical confrontation. The second scientist ended up sounding like he was talking over everybody’s head with his too intricate explanation, and Eddie Bravo was able to use that to make him out as “other,” winning the popular argument at that point. Combine these incidents with a lot of shouting over the other guy, and Eddie Bravo came off well…. the video is listed as a “debate,” never mind that it was anything but.

If you are a science educator, I would recommend watching that video. Scientist #1 comes off as stupid and scientist #2 comes off as pompous.

You’ll love me for saying this, but that was all preface to the purpose of this blog post. Most modern flat earthers are Youtube trolls; they castrate their opposition by relying on the fact that evidence of the Earth’s roundness is provided by a source that is intrinsically tainted and questionable. And, the truth is that many people who believe the Earth is round really only understand this fact based on a line of evidence that people like Eddie Bravo will not accept. How do you straighten out a guy who will not accept the satellite images?

Well, how is it that we know the earth is round? We knew it before there were satellites, computer graphics and photoshop. With globalism and information society, these knowable, observable things are amplified. Flat earthers prove they are incompetent researchers every time they open their mouths and say “Well, have you researched it? I did and the earth is flat!”

Now, suppose I was a flat earth researcher, how would I go about the science of establishing the shape of the earth using a series of modern, readily available, cheap tools?

Hypothesis: The Earth is flat! It’s the stable, unmoving center of the universe and the sun and sky move over it.

1 flat earth model

One thing that we can immediately see about this model is a simple thing. When the sun is in the sky, every point on the plane can see it at the same time since there is nothing to obstruct the line of sight anywhere. In the 1800s, nobody could really travel fast enough to be able to tell whether or not this was the case: for every person in that time, it was enough to suppose that everybody on Earth wakes up from the night at the same time and goes about their day. For this flat earth modeled when seen from the side, the phenomenon of sunrise (a phenomenon as old as the beginning of the Earth, by the way) would look like this:

2 simple sunrise model

We have all seen this: the sun starts below the edge of the Eastern Horizon and pops up above it. For a majority of people on Earth, this is what the sun seems to do in the morning.

There are a number of simple tests of this model, but the simplest question to ask is this: Does everybody on Earth see the sun appear at the same time? Everybody is standing on that flat plane: when the sun comes up from below the horizon, does everybody on Earth see it at once?

3 simple sunrise model at sunrise

Notice, this is a requirement: if the Earth is flat, people all across the plane of the Earth will be able to see something big coming over the edge of that plane almost simultaneously, depending on nearby impediments, like mountains for instance.

So, here’s the experiment! If you live in California, grab your smart phone, buy an airplane ticket and fly to New York. The government has no control at all over where you fly in the continental US of A and they really won’t care if you take this trip. New York, New York is actually a kind of fun place to visit, so I recommend going and maybe catching a Broadway show while you’re there. When you get to New York, find someplace along the waterline where you can look east over the ocean and go there in the morning before sunrise. After the sun rises, wait 30 minutes and then place a phone call back to one of your buddies in California and ask him if the sun is up.

This experiment can be repeated with any two east-west related locations on Earth, though the time delays will depend on the separation so that maybe a half hour is long enough for the sun to rise in both places. Any real flat earth “researcher” should be running this experiment.

For the set-up written above, the sun comes up in New York four hours before it actually comes up in California! A California view of the sun is blocked below the horizon of the Earth for four hours after it has become visible in New York.

Now, you might argue, New York is on the east side of the US and is much closer to where the sun comes up on our hypothetical plane, so maybe the Rocky Mountains are obstructing some view of the sun in LA.

4 mountain occlusion

And that this blocking effect lasts 4 hours.

So, here’s the new experiment. Drive your car from LA to NY and watch the odometer; you can even get a mechanic you trust to assure you that the government hasn’t fiddled with it. You now know the approximate distance from LA to NY by the odometer read-out. Next, you buy a barometer and use the pressure change of the air to measure how high the Rocky Mountains are… or, you could just use a surveying scope to measure the angular height of the mountains and your car to check distances, then work a bit of trig to estimate the height of the mountains.

5 measure mountain height

The Rockies are well understood to be just a bit taller than 14,000 ft.

With these distances available, you do the following experiment with surveying scopes. When the sun appears above the horizon in LA, your friend measures the angle above ground level where it is visible (surveying scopes have bubble levels for leveling the scope). You measure the angle above the horizon at the same time using a survey scope of your own in New York. Remember, you’ve got smartphones, you can talk to each other and coordinate these measurements.

For the flat earth, the position of the sun in the sky should obey the following simple triangular model:

6 flat earth trig model

This technique is as old as the hills and is called “triangulation.” Notice, I’ve used three measurements made with cheap modern equipment: angle at LA, angle at NY and the distance from LA to NY (approximate from the odometer). What I have in hand from this is the ability to determine the approximate altitude of the sun using a bit of high school level trig. Use law of sines and it’s easy to forecast the altitude of the sun from these measurements:

7 height of sun

I won’t do the derivation this once, but you just plug in the distance and the angles, then voila, the height of the sun over the flat earth. (I’m not being snide here: Flat Earthers don’t even seem to try to use trig.)

What we know so far is that the sun comes up four hours earlier in New York than LA and that we would expect that the sun should be visible everywhere on the flat earth at the same time as it comes over the horizon. Maybe the Rockies are blocking LA from seeing the sun for four hours. This would give rise to the following situation:

9 mountain triangle

You end up with similar triangles formed by the triangle of LA to the Rocky Mountains and the triangle of LA to the sun. Knowing the height of the mountains and the distance from LA to the mountains, you get the angle that the sun must be at when it appears in LA. This gives us a relation where the angle from LA to the top of the mountains must be the same as the angle from LA to the sun when it appears. We would expect the angle to be very small since the Rockies are really not that high, so finding it nearly zero to within the noise of the instrument would be expected.

Now, LA to New York is about 2,800 miles and the distance from LA to Denver is 1,020 miles. The mountains are 14,000 feet tall. In four hours of morning, from New York, the sun will appear to be at an angle of ~60 degrees over the horizon (neglecting latitude effects… leave that for later). If you start plugging these figures into equations, the altitude of the sun must be 7.3 miles up in the sky, or 38,500 ft.

Huh.

You can fly at 40,000 ft in an airliner. Easy hypothesis to test. If the sun is only 7.3 miles up and visible at 60 degrees inclination in New York, you could go fly around it with an airplane.

Has anybody ever done that?

A good scientist would keep looking at the sun through the whole day and might notice that the angular difference of the sun’s inclination observed in the spotting scopes at New York and in LA does not change. Both inclinations increase at the same rate. There is always something like 60 degree difference in inclination in the sky from where the sun rose between these two places (again, neglecting latitude effects; this argument will appear a tiny bit janky since New York and Los Angeles are not at the same latitude, but the effect should be very close to what I described).

For this flat earth model to be true, the sun would need to radically and aphysically change altitude from one part of the day to the next in order for the reported angles to be real. We know with pretty good accuracy that the sun does not just pop out of the Atlantic ocean several dozen miles off the coast every morning when it rises over the United States, whatever the flat earthers want to tell you. And, this is pretty much observable without any NASA satellites. Grab yourself a boat and go see! The other possibility is that the sun is much further away than 7 miles and that the physical obstruction between LA and New York is much larger than just the height the Rocky Mountains over sea level –and also maybe that the angles on the levels of the spotting scopes somehow don’t agree with each other.

For this alone, the vanilla flat earth model must be discarded. You cannot validate any of the predictions in the model above: LA and New York do not see the sunrise at the same time and the sun clearly is not only 7 miles high in New York. To give them some credit, most modern flat earthers, including Eddie Bravo, do not subscribe directly to this model.

For a point, I would mention that every flat earth model struggles with the observable phenomenon of time zones and jet lag. If any flat earther ever asks you what convinced you of a round Earth, just say “Time Zones” in order to forestall him or her and to not look like you’re avoiding the question. Generally speaking, time zones exist because the curve of the Earth (something that flat earthers claim shouldn’t exist) obstructs the sun from lighting every point on the surface of the Earth at the same time.

So then, now that we’ve made basically two tests of a flat earther hypothesis and seen that it fails rather dramatically in the face of simple modern do-it-yourself measurements, what model do these people actually believe in?

flat_earther_believers_explain_their_theory_on_australien_television__234804

Most modern flat earthers believe in some version of the model above (one of the major purveyors of this is Eric Dubay. I won’t link his site because I won’t give him traffic.) In this model, you can think about the Earth as a big disc centered on an axle that passes through the north pole. The sun, the moon and the night sky spin around this axle over the Earth (or maybe the Earth spins like a record beneath the sky). The southern tips of South America, Africa and Australia are placed at extreme distances from one another and Antarctica is expanded into an ice wall that surrounds the whole disc. The model here is actually not a new one and originated some time in the 1800s.

For the image depicted here, I would point out once again that if the sun is an emissive sphere, projecting light in all directions, the model above gives a clear line of sight for every location on Earth to see the sun at all times. For this reason, the flat earthers usually insist that the sun is more like a flashlight or a street lamp which projects light in a preferred direction so that light from it can’t be seen at locations other than where the light is being projected (never mind that this prospect immediately begins to suffer for trying to generate the appropriate phases of the moon).

To generate this model, the flat earthers have actually cherry-picked a few rather interesting observations about the sky. You can find a Youtube video where Eddie Bravo tries to articulate these observations to Joe Rogan. Central among them is that the North Star, Polaris, seems to not move in the night sky and that all the stars and even the sun seem to pivot around this point. In particular, during the season of white nights above the arctic circle, the sun seems to travel around the horizon without really setting (never mind that during the winter months, the sun disappears below the horizon for weeks on end… again with that pesky horizon thing; on the flat earth, the sun is not allowed to drop below the horizon and still be visible elsewhere on the same longitude since that intrinsically implies that the Earth’s surface must curve to accomplish said feat).

sun-path-arctic-circle-large

Taken from Scijinks.gov, this image demonstrates the real observation of what the sun does during the season of white nights as viewed at the arctic circle. The flat earth model amplifies this into the depiction given above.

If this is our hypothetical model, we could say that the sun is suspended over the flat Earth so that it sits on a ring at the radius of the equator in its revolution around the pole.

10 disc model

This image shows you right away the first thing to test. As seen at a distance of 3/4 of the disc’s diameter away, the sun cannot ever be seen in the sky at a lower angle of inclination than is allowed by its altitude over the surface. In other words, it can never go down below the horizon or come up over it.

11 min angle of inclination

Here, theta is the minimum angle of inclination that the sun will visit in the sky. I’ve heard flat earthers quote ~3,000 miles for the height of the sun and the absolute length of the longitude would be (3/4)*24,000 miles = 18,000 miles, which gives a minimum inclination angle of about 9 degrees over the horizon. And, that’s seen from the maximum possible distance across the width of the disc, where the flat earthers claim the sunlight can’t be seen. As a result, the sun will always have to *appear* in the sky at some inclination greater than 9 degrees –just suddenly start making light– at the time when the sun supposedly rises.

The truth of that is directly observable: do you ever see the sun just appear in the sky when day breaks? I certainly haven’t.

This failure to ever reach the horizon mixed with the requirement for time zones is enough to kill the flat earth model above: it can’t produce the observations available from the world around us that can be obtained with just the tiniest bit of leg work! The model can’t handle sunrises (period). There’s a reason that the round earth was postulated in 2,500 BC; it’s based on a series of clever but damn easy measurements. And I reiterate, those measurements are easier to make with modern technology.

It is inevitable that this logic won’t satisfy someone. The altitude number for the sun, 3,000 miles, was cribbed from flat earth chatter. Suppose that this number is actually different and that they don’t actually know what it is (surprise, surprise, I don’t think I’ve ever seen evidence of any one of them doing something other than making YouTube videos or staring through big cameras trying to see ships disappear over the horizon and not understanding why they don’t. Time to get to work, guys, you need to measure the altitude of the sun over the flat earth or you’ll all just keep looking like a bunch of dumbasses staring at tea leaves!)

Now, then, in some attempt to justify this model, a measurement needs to be made of the altitude of the sun (again). You can do it basically in the same way you did it before; you mark out a base length along the surface of the Earth and station two guys with surveying scopes at either end: you count “1,2,3” over the smartphone and then both of you report the angle you measure for the inclination of the sun. In this case, I recommend that one guy be stationed south of the equator and the other guy stationed north, both off the equator by the same distance along a longitude line. The measurement should be made on either the Vernal or Autumnal equinox and it should be made at noon during the day when the sun is at its highest point in the sky. This should make calculations easier by producing an isosceles triangle. How do you know you’re on the same longitude line? The sun should rise at the same time for both of you on the equinox. And, I specify equinox because I would rather not get into effects caused by the Earth’s axial tilt, like the significance of the tropics of Cancer and Capricorn (you want to know about those, go learn about them yourself).

12 height of sun ver 2

From this measurement how do you get the height of the sun? You use the following piece of very easy trig:

13 trig height

And, note, this trig will not work unless both angles measured above are the same… but you can orchestrate this with a couple spotters, an accurate clock and a couple surveying scopes.

If you do this very close to the equator, where d is small, you will find that the sun is at some crazily high altitude. You may not be able to distinguish it because of the sizeable angular width of the sun, but it will be very high… in the millions of miles. This by itself will push the minimum allowed angular height of the sun up, not down, because it’s larger than what was taken for the calculation above. To handle the horizon problem where the sun can only appear to be higher than about 9 degrees in the sky and never cross the horizon, the height of the sun must be lower than 3,000 miles, not higher. Humans were unable to do this calculation in prehistory and used a different set of triangles to try to estimate the height of the sun.

If you are a good scientist, you will repeat this measurement a number of times with different base distances between the spotters. If the Earth is flat, every base length you choose between the spotters should produce the same height for the sun (this is an example of the scientific concept of Replication).

Here’s what you will actually find:

14 three measurements

At a latitude close to the equator, during the first measurement, the sun will appear to be very far away at a really high altitude. With the second measurement, at mid latitudes on either side of the equator, the sun will appear to be at a significantly lower altitude. During the final measurement, at distant latitudes, as far north and south as you can get, the sun will appear to actually sit down on the face of the Earth. If you coordinate this experiment with six people on group chat all at once, this is what they will all see simultaneously. Could I coordinate the measurement locations so that the sun appears to be 3,000 miles high? Sure, but who in the hell would ever take that as honest? Flat earthers blame scientists for being dishonest… what if the flat earthers are the ones being dishonest? Does it not count for them somehow?

Since the sun suddenly appears to be speeding toward the Earth, does this mean that it’s about to crash down onto the experimenters you have stationed at the equator? No. It just means that your model is completely wrong because it hasn’t produced a self-consistent measurement. A mature scientist would consider the flat earth a dead hypothesis at this point.

Why does the round earth manage to succeed at explaining this series of observations? For one thing, the round earth doesn’t assume that the spotting scopes are stationed at the same angular level.

15 round earth contrast

The leveling bubble on the spotting scope can only assume the local level. And, the angle that you end up measuring is the one between the local horizon and the sight line. On the equinox (very important) the sun will only appear to be directly overhead at noon on the equator.

If you’re still unconvinced that the flat earth is a dead hypothesis which doesn’t live up to testing and continue to focus on strange mirages seen over the surface of the ocean on warm days as evidence that the round earth can’t be right, consider the following observations.

Flat earthers use Polaris as the pivot around which the sky spins. Why is it that Polaris is not visible in the sky from latitudes south of the equator? Why is it that the Southern Cross star constellation is not visible from the northern hemisphere? Eddie Bravo, as a Gracie hunter, surely must have visited Brazil: did he ever go outside and look for the north star during a visit? Pending that, did he look for the Southern Cross from Las Vegas?

Flat earthers use the observation that the stars in the sky rotate counterclockwise around Polaris as evidence that the sky is rotating around the disc of the Earth. Have they ever gone and observed at night from the tip of Argentina in South America that the sky seems to rotate clockwise around some axis to the south? How can the sky rotate both clockwise and counterclockwise at the same time? In the flat earth model, it can’t, but in reality, it does! As an extension, why in the hell does the sun come straight up from the east and set straight in the west on equinox at the equator? When seen at the North Pole, on equinox day, simultaneously, the sun rolls around the horizon at the level of the ground and never quite rises. Use your smartphone and take the trip to see! Send a friend to Panama while you go to Juneau Alaska and talk on the smartphone to see that it happens this way in both places at once.

Don’t take my word for it, go and make the observations yourself!

How is this all possible?

I’ll tell you why.

It’s because flat earthers never test the models they put forward with the tools that are at their flipping fingertips. “Flat Earth ‘Research'” my ass.

Do I need NASA satellite pictures or rocket launches to know that the Earth is round? Pardon my french, but Fucking hell, no! Give me the combination of time zones with the fact that the sun actually pops up over the horizon when it rises and your ass is grass. Flat earth models can’t explain these observations simultaneously, they can only do one or the other.

Edit 11-28-17

Yeah, I have a tiny bit more to say.

If all of what I’ve said still does not convince you, likely you’re hopeless. But, here’s a comparison between what the sun does in the sky over the disc shaped flat earth and what it actually does.

Here’s how the sun travels across the sky on the disc-shaped earth:

16 flat earth sun track

Here’s what the sun really does depending on latitude:

17 earth sun track

This particular set of sun behaviors in the sky is actually visible year round, but the latitude where the sun travels from East, straight over the apex, to West varies North to South depending on the season when you look. At equinox, the observation is symmetric at the equator, but it shifts north and south of there as the months move on, producing the same general pattern above. In the winter, the axial tilt of the Earth prevents the sun from rising over the north pole –ever– while the same is true at the south pole during the summer of the northern hemisphere. Flat earthers seem to never make any observations about what happens in the sky to the sun south of the equator. Do they not go to Australia or South America to take a look?

As an extra, I have made the mistake of rooting through Eric Dubay’s “200 proofs” gallop. I once even thought about writing a blog post about the experience, but decided it was too exhausting. For one thing, quantity does not assure quality. Many of the 200 proofs are taken from accounts of 19th century navigation errors, and one must wonder whether such accounts hold as valid in the 21st century world. Further, some of the proofs are simple, flat out lies: among the proofs is an exhaustive observation of the lack of airline flight routes in the southern hemisphere, twisting route information to show that flights must pass through the northern hemisphere to reach destinations as far separated as the tip of South America and the tip of South Africa, which simply ignores the fact that flight routes exist for these destinations that do not go to the northern hemisphere. Are there more flight routes in the Northern hemisphere than in the southern hemisphere? Yes, most of the human population lives at or north of the equator… most of the places anybody would want to go are in the northern hemisphere. If you doubt that such a flight route exists, go to the Southern hemisphere and take an airline flight from Argentina to South Africa and use a stopwatch during the flight to see if it’s a fraction of the length Dubay would claim –commerical airline jets have a known flight profile that would be impossible to hide; the rate at which they cross distance is well-characterized. Did Dubay do this experiment? Nope. What should stun a person about Dubay is that he does not merely make wrong claims, it’s that he repeats the same wrong claims 60 times in a row to an audience that not only fawns over it, but fails to point out the giant logical gaps that are detailed above. How hard is it to see that you not only need to cope with time zones, but with sunrises too?

Pointing out a tiny detail, like not understanding how mirages work on the surface of the ocean, does not somehow validate a model that can’t handle the big ticket items, like time zones and sunrises. It only shows that you can’t understand how the small details work. I can also sort of understand that people are losing touch with the world around them as they grow more and more entrenched in the online world, but if you fail to understand that the online world does not dictate the physics of the real world, you are in big trouble.

Revoke Shaquille’s Doctorate in Education… he doesn’t deserve it.

We are in a world where truth doesn’t matter.

Read this and weep. These men are apparently the authorities of truth in our world.

Everywhere you look, truth itself is under assault. It doesn’t really matter whether you believe, it really doesn’t matter what you want it to say. Truth is not beholden to human whims. We can’t ultimately change it by manipulating it with cellphone apps. We can’t reinterpret it if we wanted to. One of these days, in however great of importance we hold ourselves, the truth will catch up. And we will deserve what happens to us after that point in time.

“It’s true. The Earth is flat. The Earth is flat. Yes, it is. Listen, there are three ways to manipulate the mind — what you read, what you see and what you hear. In school, first thing they teach us is, ‘Oh, Columbus discovered America,’ but when he got there, there were some fair-skinned people with the long hair smoking on the peace pipes. So, what does that tell you? Columbus didn’t discover America. So, listen, I drive from coast to coast, and this s*** is flat to me. I’m just saying. I drive from Florida to California all the time, and it’s flat to me. I do not go up and down at a 360-degree angle, and all that stuff about gravity, have you looked outside Atlanta lately and seen all these buildings? You mean to tell me that China is under us? China is under us? It’s not. The world is flat.”

This spoken by a man with a public platform and a Doctorate in Education. This is the paragon of teachers!

{Edit: 3-20-17 since I’m thinking better about this now, I will rebut his meaningless points.

First, arguments about whether or not Columbus discovered America are a non-sequitur as to whether or not the Earth is round.

Second, driving coast to coast can tell you very little about the overall roundness of the Earth, especially if you aren’t paying attention to the things that do. The curvature of the earth is extremely small: only about 8 inches per mile. This means that on the scale of feet, the curvature is in thousandths of an inch, so that you can’t measure it to not be flat at the dimensions that a human being can meaningfully experience standing directly on the surface. Can you see the couple feet of curvature at a distance of fifty miles looking off a sky scraper in the middle of Atlanta, or distinguish the deviation from the same direction of ‘up’ of two sky scrapers separated by ten miles? You can’t resolve tens of feet with your eyes at a distance of miles. That said, you actually can see Pikes Peak emerge over the horizon as you come out of Kansas into Colorado, but I suppose you would explain that away by some sort of giant conspiracy theory elevator device. To actually start to directly see the curvature at a meaningful degree with your eyes, you need to be at an altitude of hundreds of thousands of feet above the surface… which you could actually do as somebody with ridiculous wealth.

Third, how would you know that China is not ‘under?’ How would you know where China isn’t when you wouldn’t be able to see that distance along a flat surface no matter which direction you look? Can you explain the phase factor that you pick up to your day that causes your damn jet lag every time your wealthy, ignorant ass travels to places like China? By your logic, you should be able to use your colossal wealth to travel to where the globe of the sun pops out of the plane of the Earth in the east every morning. Hasn’t it once occurred to you that if you’re truly right, you should test a hypothesis first before making an assertion that can be easily shown to be wrong?}

You made a mint of money on the backs of a lot of people who made it possible for you to be internationally known, all because of the truth that they determined for you! You do not respect them, you do not understand the depth of their efforts, you do not know how hard they worked. You do not deserve the soapbox they built for you.

For everyone who values the truth, take a moment to share a little about it. Read other things in my blog to see what else I have to say. I have very little I can say right this second; I’m aghast and I feel the need to cry. My hard work is rendered essentially meaningless by morons like Shaquille O’Neal… men of no particular intellect or real skill dictating what reality ‘actually is’ while having no particular capacity to judge it for themselves.

From a time before cellphone apps and computer graphics manipulation, I leave you with one of the greatest pinnacles of truth ever to be achieved by the human species:

moon_and_earth_lroearthrise_frame_0

Like it or not, that’s Earth.

If you care to, I ask you to go and hug the scientist or engineer in your life. Tell them that you care about what they do and that you value their hard work. The flame of enlightenment kindled in our world is precious and at dire risk of guttering out.

Edit:

An open letter to the Shaq:

Dear Shaquille O’Neal,

I’m incredibly dismayed by your use of your public personae to endorse an intellectually bankrupt idea like flat earth conspiracy theories particularly in light of your Doctorate Degree in Education. If you are truly educated, and value truth, you should know that holding this stance devalues the hard work of generations of physicists and engineers and jeopardizes the standing of actual scientific truth in the public arena. The purpose of an educator is to educate, not to misinform… the difference is in whether you spread the truth or not.

There is so much evidence of the round earth available in the world around us without appeal to digital media, the cycle of the seasons, scheduled passages of the moon and the planets, observations of Coriolis forces in the weather patterns and simple ballistics, the capacity to jump in an airplane heading west and continue to head west until you get back to where you started, the passage of satellites and spacecraft visible from the surface of the Earth over our heads, the very existence of GPS available on your goddamn smart phone, to the common shapes of objects like the moon and planets visible through telescopes in the night skies around us, that appeals to flat earth conspiracies show a breathtaking lack of capacity to understand how the world fits together. That it comes from a figure who is ostensibly a force of truth –an educator– is truly deeply hurtful to those of us who developed that truth… modern scientists and engineers.

Since you are so profoundly wealthy, you among all people are singularly in a position to prove to yourself the roundness of our world. I bet you 50 million dollars that I don’t even have and will spend my entire life trying to repay, that you can rent an airliner with an honest pilot of your choice and fly west along a route also of your choice, and come back to the airport you originally departed from without any significant eastward travel. Heck, you can do the same exercise heading north or south if you want. And, if that experiment isn’t enough, use your celebrity to talk to Elon Musk: I hear he’s selling tickets now to rich people for flights around the moon. I bet he would build you a specially-sized two-person-converted-to-one berth in his Dragon capsule to give you a ride high enough to take a look for yourself at the shape of the world, if your eyes are the only thing you’ll believe. If you lose, you pay a 49 million dollar endowment to the University of Colorado Department of Physics for the support of Physics Education –and a million to me for the heartache you caused making a mockery of my education and profession by use of your ill-gotten public soapbox and mindlessly open mouth. Moreover, if you lose, you relinquish your Doctorate and make a public apology for standing for exactly the opposite of what that degree means.

Sincerely,

Foolish Physicist
of Poetry in Physics

Edit 4-5-17:

So, Shaq walked back his comments.

O’Neal: “The first part of the theory is, I’m joking, you idiots. That’s the first part of the theory. The second part is, I said jokingly that when I’m in my bus and I drive from Florida to California, which I do every summer, it seems to be flat. When I’m in my plane, and we’re getting ready to land, and I open up the window, and I’m looking at all the land that we’re flying over, it seems to be flat.”

“This world we live in, people take things too seriously, but I’m going to give the people answers to my test,” he said. “Knowing that I’m a funny guy, if something seems controversial or boom, boom, boom, you’ve got to have my funny points on, right? So now, once you have my funny points on, that should eradicate and get rid of all your negative thoughts, right? That’s what you should do when you hear a Shaquille O’Neal statement, OK? You should know that he has funny points right over here, and what did he say? Boom, boom, boom, add the funny points. You either laugh or you don’t laugh, but don’t take me seriously. When I want you to take me seriously, you will know by the tone of my voice that I’m being serious.”

“No, I don’t think that,” O’Neal told Harbinger of a flat Earth. “It was a joke, OK? So know that when Shaquille O’Neal says something, 80 percent of the time I’m being humorous, and it is a joke. And 20 percent of the time, I’m being serious, but when I’m being serious, you’ll know. You want to see me, seriously? See me and Charles Barkley going back and forth on TNT. That’s when I’m mad and when I’m serious. Other than that, you’re not going to get that out of me, so I was just joking people. The Earth is not round, it’s flat. I mean, the Earth is not flat, it’s round.”

One thing that should be added to these statements is this: there are people who are actively spreading misinformation about the state of the world, for instance that the earth is flat. The internet, Youtube, blogs, you name it, has given these people a soapbox that they would not otherwise have. Given that there is a blatant antiscientific thread in the United States which is attacking accepted, settled science as a big cover-up designed to destroy the rights of the everyday man, it is the duty of scientists and educators to take the truth seriously. In a world where Theory of Evolution, Climatology and Vaccine science are all actively politicized, we have to stand up for the truth.

Where real scientists are about studying and doing our work, the antiscientific activists are solely about spreading their belief… they don’t study, they don’t question, they spend their time actively lobbying the government and appealing to legislators, running for and getting onto school boards where they have an opportunity to pick which books are presented to school districts and various places where they can actively undercut what students are told about the truth of the world. They aren’t spending their energy studying, they are spending their energy solely on tinkering with the social mechanisms which provide our society with the next generation of scientists. As such, their efforts are more directed at undercutting the mechanisms that preserve the truth rather than on evaluating the truth… as scientists do. These people can do huge damage to us all. Every screwball coming out of a diploma mill “Quantum University” with a useless, unaccredited ‘PhD’… who goes off to promote woo-bong herbalist healthcare as an alternative to science based medicine, does damage to us all by undercutting what it means to get healthcare and by putting crankery and quackery in all seriousness at the same level as scientific truth when there should be no comparison.

If everybody understood that there is no ‘alternative’ to the truth, joking about what is true would mean something totally different to me. But, we live in a world where ‘alternative facts’ are a real thing and where everyone with a soapbox can say whatever they wish without fear of reprisal. Lying is a protected right! But someone has to stand up for truth. That someone should be scientists and educators. That should include an ‘education doctorate’ like the Shaq. If he were an NBA numbskull without the doctorate, I would care less: Kyrie Irving is a joke. But he isn’t; he’s got a doctorate and he has a responsibility to uphold what that degree means! The only reason humor in irony can work is if it can be clear that one is being ironic instead of serious… and that is never completely clear in this world.

Calculating Molarity part 2: Vaccine structure

I’ve continued to think about this post at Respectful Insolence. You may already have read my previous post on this subject. I had a short conversation with Orac by email about the previous post; he had asked me what I thought about the alterations he made after thinking about my objections. One thing I answered that I thought he might add has sort of stuck with me and I think is worthy of a post of its own. What do you know, two posts in one week! This one may not be tremendously long, but it’s important and it bolsters the thesis written in that post on Respectful Insolence. They are about minimizing the contamination; this is true, but I would actually modify it by saying that you have to know what you’re looking at before you claim it’s a problem.

My previous writing here has been directed at my fellow skeptics and could be used by antivaccine advocates to attack people whose efforts I normally support. I would rather my efforts be focused at the greater good: namely to support vaccines. I don’t write often about my specific research expertise, but I’m mainly a soft matter researcher and I have a great deal of experience with colloids, nanoparticles and liquid crystals. This paper they’re talking about is my cup of tea! More than that, I’ve spent time at the university electron microscopy lab using SEM and elemental analysis in the form of EDS, shooting electron beams at precipitates obtained from colloidal suspensions.

I feel that the strategy of showing that vaccine contaminants are extraordinarily minor and not nearly as large as the antivaccine efforts try to claim is a good effort, but might also be the wrong strategy for tackling this science, particularly when screwing up the math. A part of my reason for feeling this way is that the argument is actually hinging on the existence, or not, of particulate objects in the preparations that the antivaxxers are examining. The paper that Orac (and, in a quotation, Skeptical Raptor) are looking at, is focusing on the spurious occurrence of a small particle content revealed in vaccine samples under SEM examination. The antivaxxers are counting and reporting particles found in SEM, of which they are reporting highly dispersive values: very few in some, many in others. They are also reporting instances where EDS shows unexpected metal content, like gold and others. Here, Orac notes that the particles are typically so few that they should be considered negligible and that’s fair… question is, what is the nature of these particles? And, should we take the antivaxxer EDS results seriously? It seems poor form for me to criticize my fellow skeptics and to not turn my attention against the subject that are analyzing –to allay my own conscience, I have to open my mouth! I therefore spent a bit of time of my own looking at the paper they were analyzing “New Quality-Control Investigations on Vaccines: Micro- and Nanocontamination.” I won’t link to it directly because I have no respect for it.

I’ll deal with the EDS first.

edsschematic

This picture is from https://s32.postimg.org/yryuggo1x/EDSschematic.gif

EDS is another spectroscopy technique that is sometimes called electron fluorescence. You shoot an electron beam (or X-ray) at a sample with the deliberate intent of knocking a deep orbital electron out of the atom. A higher energy shell electron will then drop down into the vacant orbital and emit an X-ray at the transition energy between the two orbitals. The spectrometer then detects the emitted X-rays. Because atoms have differing transition energies due to the depth of their shells, you can identify the element based on the X-ray frequencies emitted. A precondition for seeing this X-ray spectrum is that your impinging electron beam must be at sufficiently high energy to knock a deep shell electron up into the continuum, ionizing the atom and that energy might actually be considerable. There is also a confounder in that a lot of atoms have EDS peaks at fairly similar energies, meaning that it can be hard sometimes to distinguish them.

Here is a periodic table containing EDS peaks from Jeol:

energy-20table-20for-20eds-20analysis-1

Now, when you perform SEM, you spread your sample onto a conductive substrate and observe it in a fair vacuum. To generate an SEM image, the electron beam is rastered in a point across an area in the sample and an off-angle detector detects electron scatter. You’re literally trying to puff electrons up into the space over the sample by bombarding the surface. The substrate is usually conductive in order to replenish ejected electrons. The direction the ejection puff travels depends on the topography of the surface and the off-angle positioning of the detector means that some surfaces face the detector and give bright puffs while surfaces facing away do not. This gives the dimensionality to SEM images. Many SEM samples are sputtered with a layer of gold to improve contrast by introducing a material that is electron dense, but a system with the intent to use EDS would actually be directed at naked samples. With SEM, you always have to remember that the electron beam is intrinsically erosive and damaging. The beam doesn’t just bounce off the surface, it penetrates into the sample to a depth that I’ve heard called the interaction volume. The interaction volume is regulated by the accelerating voltage of the electron beam: higher accelerating voltages means deeper interacting volumes. Crisp SEM images that show clear surface features are usually obtained with low accelerating voltages which limit the interacting volume to only surface features of the sample. SEM images obtained at higher accelerating voltages take on a sort of translucent cast because the beam penetrates into the sample and interacts with an interior volume.

The combination of EDS with SEM is a little tricky. In SEM, EDS gains its excitation from the imaging electron beam of the system. Now, what makes this tricky is that samples like protein antigens in a vaccine are predominantly carbon and have low electron density, making them low contrast. You hit the sample at low accelerating voltages to see surface features. If you try to do EDS, you must hit the sample with electrons at energies sufficient to eject deep orbital electrons: it depends on the depth of that atom’s potential and on which electron is ejected, but atoms like gold can have deeper orbitals than atoms like carbon, meaning larger energies are needed to resolve deeper gold atom orbital transitions. Energies favorable to SEM imaging are sometimes very low compared to the energies needed to hit the EDS ejection energies. When you switch to EDS from imaging, you must be aware that you’re gaining a deeper penetration depth from the larger interaction volume of the beam. If your sample is thin and has low electron density, like carbonaceous biological molecules, you can easily be shooting through the sample and hitting the substrate, whatever that might be.

This can be a serious confounder because you don’t necessarily know where your signal is coming from. In the article commented on by Orac, the authors mention that they’re using an aluminum stub as an SEM mount, but they also talk about aluminum hydroxide and aluminum phosphate. The EDS aluminum signal is sensitive only to the aluminum atoms: you can’t know if the signal is coming from the mount or the sample! How do they know that the phosphate signal isn’t from phosphate buffered saline? That’s a common medical buffer that shows up in vaccine preparation. You can’t know if the material you’re looking at is aluminum phosphate from EDS or SEM.

As I mentioned, you also have to contend with close spacing of EDS peaks: if you look at that periodic table linked above, there’s a lot of overlap. To know gold, for certain, you really need to hit a couple of its EDS peaks to make certain you aren’t misreading the signal (all the peaks you get will have a gaussian width, meaning that you might have a broad signal that covers a number of peaks.) And, at least in the figure presented by Orac, they’re making their calls based on single peak identifications. This in addition to the other potential confounders Orac brought up: exogenous grit and the possibility that they’re reusing their SEM stub for other experiments. How can they be certain they aren’t getting spurious signals?

For EDS, I would be careful about making calls without having some means of independent analysis… like knowing what materials are supposed to be present and possibly hiring out elemental analysis of the sample. Will the gold or zirconium appear in the second analysis? Remember, science depends on being able to reproduce a result… if it was always spurious, a good tale is not being able to make it dance the second time around! Reporting everything doesn’t always mean that you know what you’re looking at. When I was doing EDS more routinely, I had a devil of a time hitting Titanium over Silicon and Gold signals… I knew titanium was present because I put it there, but I had trouble hitting it or ascribing it to specific particles in the SEM image. The EDS would not routinely allow me to reproduce an observation before the sample simply exploded while I was pounding high energy electrons into it.

Referring directly to the crank paper myself and I note that they make some extremely complicated mineral calls in their tables from the EDS data. Again, be aware that EDS is only sensitive to atoms specifically: you can’t know if Aluminum signals are aluminum phosphate or aluminum hydroxide or aluminum from the SEM stub. To know mineral crystals, you need precision ratios of the contents or X-ray diffraction or maybe Raman analysis of the mineral’s crystal lattice.

From their SEM imagery, it looks to me like they’re using a very strong voltage, which is confirmed in their methods section. They claim to be using voltages between 10 kV and 30 kV. These are very high voltages. For good surface resolution of a proteinaceous sample, I restricted myself to around 1 kV to 5 kV and sometimes below 1 kV and found that I was cutting holes through the specimen for much higher than that. Let me actually quote a piece of their methods for sample mounting:

A drop of about 20 microliter of vaccine is released from
the syringe on a 25-mm-diameter cellulose filter (Millipore,
USA), inside a flow cabinet. The filter is then deposited on an
Aluminum stub covered with an adhesive carbon disc.

They put a cellulose filter from Millipore into this SEM. I would have dried directly onto a clean silicon substrate. Here are the appropriate specimen mounts from Ted Pella. Note that the specimen mounts are not cellulose. Cellulose filters are used for a completely different purpose from normal SEM specimen mounts and, really importantly, you can’t efficiently clean a cellulose filter before putting your sample onto it. And, since these filters are actually designed to easily collect dust and grit as a part of their function, it is actually kind of difficult to get crap off of them. Without a control showing that their filters are clean of dust, there’s no way to be certain that this article isn’t actually a long survey examining the dust and foreign crap that can be found impregnating cellulose filters since the SEM acceleration voltages are unquestionably high enough to be cutting through a thin, low contrast biological layer on the top.

I won’t say more about the EDS.

So, I wanted also to address the particulate discussion a bit more directly too.

First off, from the paper directly, there is no real effort at reproduction or control. The source of the particles mentioned could be the carbon adhesive, the cellulose membrane or the vaccine sample. Having thought about it, I personally would bet on that cellulose: you don’t use them this way! They claim to be making preparations in a flow hood to keep dust out, but that doesn’t mean the dust isn’t already on any of the components being brought into the hood.

I stand by my original criticism of Orac’s post that these particles can’t be effectively quantified by molarity: those shown in the paper are all clearly micron scale objects, meaning that they have relatively large mass in and of themselves and constitute significant quantities of material. A better concentration unit for describing them would be mg/mL. I repeat that we don’t know the source of these objects for certain because the experiment is performed without true replication! If the vaccines are the source, the authors should have been able to perform a simple filtration of a vaccine specimen by a 0.22 um or 0.1 um filter and show that this drastically reduces contamination because many of their micrographs are of objects that should not have passed through such a filter… but they did no comparable experiment.

As I’ve been thinking about it, there are a couple potential different particles that could be observed under these conditions. The first is dust, as already detailed. The second possible source is vaccine components, but from a non-contaminating perspective. Orac used a quote by Skeptical Raptor who was rebutting the idea of Aluminum hydroxide being a strong contaminant by again mistaking particles for molecules. I won’t get into his difficulty calculating concentration since it was similar to what happened to Orac, but he was speaking about Aluminum hydroxide being a chemical that is a tiny fraction of a nanogram in a vaccine and therefore much less than environmental exposure to aluminum. I know I probably annoyed Orac with my thoughts about this as I was thinking out loud, but Aluminum hydroxide is not any sort of contaminant in the Cervarix vaccine friend Raptor was talking about: it’s the Adjuvant! Here’s a product insert for a Cervarix vaccine.

cervarix-pi-pil

In this vaccine, I found that there is approximately 500 ug of Aluminum hydroxide adjuvant added per 0.5 mL vaccine dose. If you look in the Aluminum hydroxide MSDS, there is no LD50 for this compound, no cancinogen warnings and no other special health precautions from chronic exposure –it irritates your eyes from contact, but what doesn’t? It got a 1 as a chemical hazard. Antivaxxers are crazy about being anti-aluminum based upon more decades old information that has since been rebutted, but for all intents and purposes, this material is pretty harmless. One special thing about it is that it’s actually very insoluble unless you drop an acid or a strong base on it, meaning that it should be no surprise if it’s a particulate in a neutral physiological pH vaccine (Ksp = 3×10^-34)! In vaccine design, and I haven’t spent a huge amount of time looking, but the main point of the adjuvant is to cause the antigen to be retained at the site of injection for a prolonged time so that the body can be exposed to it for a longer period. The adjuvant adheres the vaccine antigen and, by being an insoluble particle, it lodges in your tissues upon injection and stays there, holding the antigen with it. I found immunology papers on pubmed calling this establishment of a ‘immune depot’ for stimulating immune cells. Over a prolonged period, the insoluble Ksp will allow this compound to gradually dissolve and release the antigen out of the injection site, but Aluminum hydroxide will never have a very high concentration in the body as a whole: that’s what Ksp says, that the soluble phase of the salt components can be no greater than about 2.4 nM, which is well below established exposure limits recommended in the MSDS of between 30 nM and 100 nM (by my calculation).

But, if you look at vaccine adjuvant under SEM, it will be a colloidal particle with a core of Aluminum in the EDS! You can even see examples of this in the target paper itself: the SEM in figure 1 looks like a colloid fractal (they call it a ‘crystals’, but it looks like a precipitate deposition fractal), and the colloids are probably aluminum hydroxide particles caked with antigen protein (again, EDS can’t distinguish between  aluminum hydroxide mixed with PBS and aluminum phosphate, contrary to what the caption says). And, these colloids are INTENDED TO BE THERE by the manufacture of the vaccine. Note, this is a structure designed into the vaccine to help prolong the immune response.

I’ve been debating the source of the singleton particles that the authors of this paper take many SEM pictures of in the remainder of their work. They are mostly not regular enough to be designed nanoparticles or precipitate colloids and they often look like dust (Orac mentions as much). I’ve been skeptical of the sample preparation practices outlined in the paper: I think adding the cellulose membrane to the sample is asking for trouble. You use substrates in SEM to avoid contaminant issues and to provide surfaces that are easily cleaned prior to use. The cellulose polymer and vaccine antigens are all low contrast… at 30 kV accelerating voltage, the SEM could actually be interacting down into the volume of the filter (as I mentioned above). If this isn’t dust sitting on the filter prior to dropping the vaccine onto it, it might also be dust dropped randomly into the cellulose monomer during the manufacturing process and trapped there while polymerizing the membrane. The filter won’t care about most of this sort of contamination because the polymer will immobilize it. Another possibility, but the paper tests almost no hypotheses for purposes of error checking, so we’ll never know.

Overall, I found that paper incompetent. There’s no reason to take it seriously. I hope that my writing this blog post will help balance the previous post which attacked science advocates for misusing the science.

The Difference Between Trees and Rocks

This post is in response to a Flat Earther youtube video entitled “There are no forests on Flat Earth Wake Up.” I won’t link directly to this video because I refuse to help provide it with traffic.

I first happened across a description of this video in an article from The Atlantic. At the time, I sort of sat there and fulminated as I read it. That article in and of itself was not enough to stimulate a response from me because there’s really not much to say. Flat Earth believers are a train wreck of misconception and arrogance. They do not deserve acknowledgement for their ideas except to say that they are not merely wrong, but willfully contrarian to reality.

There is no arguing with a Flat Earther.

Fact is that such a person is so invested in a bad idea that they cannot be dissuaded from it. There are so many things that happen or are happening around you all the time that provide evidence against the flat earth that you need only open your eyes to see them. It takes a willful investment in the avoidance of reality to believe in a flat earth. You can look back at my response to a set of flat earth claims to know my general thoughts.

The video I mentioned above goes a step beyond the usual flat earth nonsense and makes the rather extravagant claim that there used to be forests on earth where the trees are miles tall and that land features like mesas or volcanic plugs like Devil’s Tower are stumps left from these huge trees. And, further, at some point those trees were all toppled and that the ‘man’ has a conspiracy going to cover up that they ever existed. Scientists are apparently actively complicit in hiding ‘the truth’ by distorting findings about fossils.

devils_tower_in_autumn__wyoming

Devil’s Tower is a striking piece of landscape. I’ve seen it for myself and it is visceral and impressive. The structure is sort of biological after a fashion, I will admit. It does look like a tree stump. However, making the claim that an object has a biological form is not the same as claiming the object is biological. Nature has an incredible repertoire of mechanisms for producing complicated patterns that are absolutely not biological.

How was the following pattern constructed?

stripey-weird-thing-nematic014

Tell me what you think this is! I know what it is, but I’m not going to identify it right away. Is it biological? Is this in an art museum? What do you think? More than that, how would you go about figuring out what this is? Think about it while you read.

The video I mentioned above goes on and on about things looking like other things actually being the other thing. That video is an hour and a half of blanket assertion. I admittedly could only stomach about 20 minutes of the video before it became completely clear that I wasn’t about to encounter anything resembling reality at any point along the way. Watching it all the way through is a waste of time… it should chill one to the bone that the number of ‘likes’ on this video is in the hundreds of thousands. Do that many people really get stuck on this topic?

The first thing you’ll note about that video is that the narrator very frequently says “This is bullshit” or “That’s bullshit!” Does an assertion of falsehood uproot a truth? He characterizes claims made by scientists using the words “Contrary to all laws of Physics, Chemistry and Biology.” What are those laws? What does science actually say? How do you know when a scientist is contradicting the ‘laws of science?’ You have to know what the science is, right? He goes on at length showing goofy pictures of apparently inept scientists while attacking the notion of fossilization, that a biological relic can be subsumed into a route of decomposition where the carbon structure is replaced by a long-term silicon structure.

Of course, in order to justify his mile-tall trees, he needs to completely throw out the window basically everything known about geology. His mile-tall trees weren’t actually carbon, but silicon (never mind that his entire treatise started out on the assertion that everything that’s left of these trees is carbon trapped in ice: carbon, silicon, carbon, iron, apparently self-consistency isn’t required in the rarefied atmosphere he inhabits)… and that relics of these huge trees are stumps formed by mesa-like mountains or that fossil trees from petrified forests are actually branches from some huge silicon tree. Early on, he makes the claim that trees produce a constant current of electricity (which is false) and that there was a silicon era (never mind that there is no such thing as silicon based life… that we know of on Earth. And, no, diatoms are not silicon based).

Coming back to Devil’s tower, he spends a huge amount of time claiming that there’s no way the structure of the tower could be naturally occurring without the patterning provided by life because it’s far too regular. If you look closely at the tower, it has this fascinating hexagonal columnar structure that almost looks built rather than deposited.

adventure-11-1728007

As he was marveling at Devil’s Tower and how the structure is inexplicable, I turned him off…

Let’s consider this one particular claim and distinguish how an actual scientist thinks in contrast to the nonsense put forth by this crank. The claim is that there’s no way a non-biological process can produce regular hexagonal column structures of the size seen at Devil’s tower. Claims by geologists that these structures are rock formed from lava are therefore ‘bullshit.’ I do hear scientists use the word ‘bullshit’ once in a while, but here’s the difference. The crank says ‘the structures are too big and too regular, therefore they had to have been made from a tree.’ On the other hand, a scientist would say this: ‘These structures are very big and very regular, I do not accept that they were made without the patterning provided by life, but I would change my mind about this if I could find an example of this kind of structure where I know the patterning is by a non-living process.’

Jumping to the money shot, one obvious candidate is crystallization. This process is well known to make geometrical inorganic shapes and it is understood that it happens spontaneously. Crystallization has a hefty contact to physics, chemistry and biology and there is huge literature of it outside of scientific fields. This is, of course, where gemstones come from. The objects in Devil’s Tower look very much like crystals. Can crystals become that large? Can they bend like the fluting of a tree trunk?

With Devil’s Tower in mind, I went to Google and performed an image search looking for ‘large industrially produced crystals.’ How big can crystals be made? This turned up a company by the name of Cleveland Crystals which produces large crystals:

ccboules

So, first off, crystals can be made that are ‘big.’ How big is big enough? Can it be scaled up without limit? There’s no reason to think not. The website for the company says pretty clearly that there is a correlation between the size of the crystal and the time it took to form.

Now, second, if crystals are ‘made’ by a company, does that mean that nature can’t also make crystals? Certainly a valid question since humans almost certainly caused the structures in the picture above to exist. Maybe nature can’t make them that big.

I therefore did an image search for ‘large natural crystals.’ Which produced this:

crystal11191341899

This is found in a mine in Mexico.

Do I believe that crystals can be big? Clearly they can be. But, are those things in Devil’s Tower crystals?

I then started to search for natural crystals that are hexagonal in cross section that look like rocks:

aqum413-aquamarine-crystal

This is a mineral called aquamarine. One rapidly descends into mineralogy at some point, necessitating at least some cursory respect for geology.

Now, I have big hexagonal crystals. But do they bend like the gentle curvature seen in Devil’s Tower? I mean, crystals are renown for their geometric straightness, so maybe the failure would be if crystals don’t bend.

A quick search gave me this example in Quartz:

curved300

As it turns out, crystal lattices do have the ability to deform their dimensions over long distances.

What I have now is this. There’s a process called ‘crystallization’ which is totally non-living that produces big, patterned objects that can have hexagonal, geometric cross sections that can be slightly bent all while still looking like rock. Crystallization is well known to be spontaneous and to not depend on the presence of life, even if it can occur in a factory. ‘Crystallization’ is a bit of a leap because I was simply fishing for non-living processes that can produce large, geometrically patterned objects. A bundle of crystals could conceivably be piled together into a formation like a tree stump.

So then, is Devil’s Tower a crystal formation? If it’s from a living thing, you should be able to walk over to it and break off a piece to look for biological cells… in reality, if you look at a piece of Devil’s Tower under the microscope, you would find no cells and if you put it into a mass spectrometer, you would find minerals, maybe like the ones above. There is even a testable model for how a structure like Devil’s Tower might form… it would be like a much longer term version of the conditions that happen in the factory at Cleveland Crystals, but just sitting out in the world. You could melt rock of similar chemical composition to Devil’s Tower in a crucible shaped like a tree stump and then set the crucible in conditions that support crystallization. Would it then spontaneously crystallize so that the crystals filled a volume shaped like a stump?

Notice, there are details that can be chased as long as you keep asking logical questions. A scientist will say, “I know this and this and this, but I’m not quite sure about that.”

Here’s the big difference between the scientist and the crank. The crank decided ahead of time that the formation was too *whatever* to have occurred by any means other than his preferred crankery. The scientist may start with a similar idea to the crank, but he’s got to include ‘falsification’ in his process (either directly by his own hand, or by peer review). Falsification is a loop hole that you must always add which gives you some way of being able to change your mind if better evidence or explanations come along. What evidence would I have to find in order to prove this theory wrong? A big part of the scientific method is deliberately trying to knock a theory down, to falsify it. In the case of Devil’s Tower, a crystal forming process might well have created the observed pattern, so the Tower isn’t necessarily a biological product. Since other processes exist which can produce the same outcome, the “huge tree” hypothesis is in immediate jeopardy as one among competing theories –Occam’s razor would give an adequate coup de gras to finish the argument right here since the “huge tree” theory can’t support all the evidence that the full field of geology can throw at it. But, if you’re stubborn and absolutely certain that the Tower is biological in origin, you would have to look and see if it has a biological fabric… if it has no fundamental biological structure, like evidence of cells, then it can’t be a living product and the hypothesis that it’s the stump of some huge tree must be discarded. Eventually, the combined weights of Biology and Geology would crush this fanciful little pet theory.

This may confuse some people. I’m saying that a necessary core of the scientific method is that you must go out and look for evidence that disproves your thesis. With a lot of science, it doesn’t look like this is happening anymore, which is why certain science is called ‘settled.’ The creationist will say “I’m trying to attack a hypothesis: I’m offering evidence that shows that Evolution is wrong.” The Flat Earther who made the video will say “Everything in geology is bullshit: don’t you see all the explanations I’m offering?” Even an antivaxxer will say “If you’re so confident in vaccines, why aren’t you still testing to see if they cause autism?” To many cranks, science looks like this united party who thoughtlessly discards every challenge to the hallowed orthodoxy. If science is based on tearing down accepted theories, why won’t they test my version?

In some ways, certain parts of science take on the aura of a hallowed ground. This is the result of the last generation of active theories weathering all the assaults waged against them… scientists have tried for decades to knock old theories down and offered modifications to strengthen those theories wherever an attack succeeded. As a result, the old theories became the modern theories and their weaknesses vanished. The fights occurring between scientists to falsify modern theories happen at a level above where most of the public and laymen are competent to contribute. You have to pick your fights, and if you’re smart, you understand not to pick a losing fight! In most cases, cranks are not seeing that the relevant fights have already been long since fought. The young earth creationist is typically attacking science where the fight was settled about a hundred years ago: any scientifically justifiable modification to the modern theories that would work better than Darwin’s evolution inevitably still looks too much like evolution to do anything but offend creationist sensibilities, making it a losing fight. The Flat Earther in the video needs literally to throw out the entire geology textbook and the last five hundred years of human history to get to where he has a competent fight, which means he may as well be headbutting a 10 ton granite rock. Antivaxxers are fighting a science that is more recently settled, ten years or twenty years, but settled –at some point, you can’t keep testing a discarded hypothesis. The climatology that global warming deniers question is very fresh and still contains questions, but certain parts are as settled as heliocentricism.

To contribute to science, you must be at the level of the science! Crankery often hinges on not merely willful ignorance, but on someone not understanding the limits of what they understand.

What did you think that pattern was in the mystery picture I posted above? The material depicted is also a kind of crystal, but its a type of cholesteric liquid crystal, meaning that the pattern formed spontaneously and is not biological in nature. Did you guess what it was? How easy is it to look at a pattern and be wrong about what you’re seeing? Human perception is fragile and easily fooled.

Edit 12-7-17:

I went back through the article of “The Atlantic” today which describes the Flat Earth Forests video addressed in this post and I had a couple additional thoughts.

The author of this article speaks about the geological features like Devil’s Tower having an “organic” shape. What constitutes an “organic” shape?

The word “organic” has a fairly complicated meaning, it turns out. It seems to mean “relating to or derived from living matter.” That a shape can be described as “organic” would seem to imply that it has a “biologically derived” shape.

As I stopped and thought about it, this word usage came to trouble me. It is not a lie to claim that Devil’s Tower looks like a tree stump and that this would mean that stone can have a biological shape. But, what about the shape of a stump is particular to life? Wouldn’t it be as accurate to say that a tree stump has the shape of a volcanic plug and that tree stumps are therefore igneous?

You could fix on the notion of rounded curves as being particular to “organic” shapes. But, wheels have rounded curves and basically no living thing has wheels, so wouldn’t that make an organic curve “wheel-like” and similar to an unnatural wheel?

People seem to sometimes mean “organic” as in “occurring like nature intended.” But, again, I have no idea what that means since nature produces all kinds of bizarre shapes, from the exceedingly regular to the exceedingly irregular.

It seems to me that the word “organic” in the common vernacular has come to mean basically nothing in particular except “harkening to life” whenever someone wants a cool word that means “like life” even though what they’re about to describe has just a much in common with non-living or otherwise unnatural things.

By the definitions of a chemist, an asphalt road is organic.

EM Drive paper passed Peer Review

Or, why passing peer review doesn’t suddenly mean that a technology is either validated or useful.

I just saw an article in Universe today claiming that a paper on the EM Drive is forthcoming. As you may remember from my previous post, the EM Drive is a piece of crank technology that is The One To Bring Them In and In Darkness Bind Them of the crank technology world. As they all know, it is about to change everything! (Or so they say.)

The device is an assymetrical microwave cavity which will apparently generate thrust when microwaves are injected into it without producing an apparent exhaust stream. The creator, Robert Shawyer, repeatedly invokes a crazy wrong interpretation of Special Relativity in order justify why his doodad works and makes grandiose claims about the capabilities of the device. Guido Fetta, a chemical engineer turned speculative technology wonk, has also jumped out into the public about his grand claims to test the device on a cubesat in orbit soon… Fetta’s description of why his “Cannae Drive” works is somewhat more reasonable than Shawyer’s is, but still a bit iffy…

The Cannae Drive also features an asymmetrical cavity, but is flatter than the EmDrive. According to Fetta, it works by deriving force from a reduced reflection coefficient at one of the device’s end plates, due to imbalances in the Lorentz force (a combination of electric and magnetic force on a point charge due to electromagnetic fields). Nasa Eagleworks, on the other hand, suggests that the Cannae Drive works by the cavity pushing against a “quantum virtual plasma” of particles that shift in and out of existence.

This description is actually not terribly aphysical because it’s essentially describing exactly what happens in a laser. Believe it or not, the NASA description is the crankier version since it seems to be invoking something along the lines of Casimir force. I’m not a huge fan of Eagle Labs because they skirt the ragged edge of being cranky themselves sometimes. (If it all works, I will gladly eat my words.)

I think that the one word that may be useful in this mess is the word “propellantless”… I mention this here because there could actually be a big difference in utility between claiming that the drive is “reactionless” (which is impossible) and “propellantless,” but this comes back to one’s definition of the substance of “propellant.”In the end, if the justification for the drive is simply that you don’t need to take along a huge quantity of reaction mass to make it work and can instead use a nuclear plant to power it, that is not necessarily a bad thing.

Still, house needs to be cleaned.

First, the device must be described to work in a way that matches physics. No insane invocations of Special Relativity. This paper coming out is actually a nice first step toward doing just that. Passing Peer Review is a way of saying “Yes, science is being done! We have made measurements by accepted methodology and here are our results!” Which is actually much more impressive than anything that has come out of either Shawyer or Fetta for the last decade.

Making and reporting measurement is really all there is to experimental science: we may not have the interpretation right just yet, but we have numbers that can be compared to everything else in the field. How does the efficiency actually compare to a chemical rocket? Spin the numbers! It is all to show that the methodology is sound and the numbers are honest. And, those numbers will have to ultimately say that momentum and energy are conserved. The device is not… I repeat NOT… a reactionless drive. If it has a propellant, the substance is probably in photons, not gas or plasma like in conventional chemical rockets or ion drives.

The second thing that must happen is that the device should be engineered. The core of engineering is tweaking the physical parameters of the system to optimize the functioning of the device, which requires a model of the behavior… whether you understand the physical rationale behind it or not. Again, this Peer Reviewed paper is a terrific first step because it starts to characterize the actual observed behaviors of the system. If the rumored thrust is actually 1.2 mN/kW, great! A millinewton is a higher thrust than I was estimating in my previous writing, but how big of a powerplant does that require? A nuclear submarine can carry a 500 MW reactor, which would theoretically give hundreds of Newtons of thrust, which is not insignificant at all if the rumored numbers reported by Eagle Labs are true. Now, explain why and begin to tweak the envelop. If it is just a big microwave flashlight, fine, start plugging the physics into that and tell me what the actual performance limits are.

I will admit that my previous post may have been somewhat in error: it may turn out that this research is not a waste of time, but we’ve got to get away from the cranky hopefulness and start figuring out what we’ve actually got so that we can make it better.

Now, I have made something of a shift of stance in my writing of this post. Previously, I flat out called the EM Drive a waste of time. For a very long time it looked like a vanity obsession of a garage crank with delusions of popular fame. As long as it has that air, I won’t have much nice to say. Mutilating physics to build a miracle machine is crankery and there’s way too much of that happening in our world right now. What has changed now is simple: if there is a real, explicable physical phenomenon to measure, steps forward can be taken to find a real thing. It would be nice if there’s a world-altering discovery lurking in here, but that isn’t what we have yet. It really ultimately doesn’t matter to me where the idea came from, whether it came out of somebody’s garage or some rocketry lab… millions of ideas come from everywhere all the time: the point of the science is to sort through and find which observations are actually useful so that we can discard the ones that aren’t.

We’ll at least see if there’s something useful here and hopefully have a real guess about why it works. If the numbers are not reproducible or if there is some huge other way to interpret what has been seen, then it becomes time to discard the EM Drive. I guess that’s kind of the weird thing about frontier science: it always may not survive the meat grinder, no matter the source.

Flat Earth Swan Dive

There is an article out today that Stanley Kubrick’s daughter spoke out vehemently against the idea that her father, the legend himself, helped NASA fake the moon landings. She called it ‘grotesque.’ I thought it was an elegant response to an insane and stupid idea. You hear that popular culture? The moon landing was not faked. Point a laser at the retroreflector if you don’t believe me. (IIRC, there are also now satellite images from LRO of the original lunar landing sites, but then someone favoring the moon hoax would claim those are doctored)

apollo17area1_lro900

While I was reading the comments to this article, I stumbled over a flat earther making his/her case. This person laid it out in a bulleted list saying “You have to accept or believe all of these inconsistencies in order to accept that the Earth is round,” and I could not help but write a comment replying to him. Since one of the purposes of this blog is to be a repository for the times I feel compelled to speak up in comment sections, here is an edited copy-paste of my original comment, which responded directly to each bullet point made by the flat earther.

>1. You are traveling 19 miles/second and you feel none of it.

And your point is? You can feel accelerations, not velocities. You can be in a train traveling 300 miles/hour with the shades drawn and not know it.

>2. The Earth is spinning at 1000 miles per hour and you feel none of it.

So? You feel accelerations, not velocities. Further, the only acceleration you feel in the rotation of the Earth is in a similar direction to gravity. Are you good enough to be able to tell the difference between gravity and centrifugal force?

>3. If you could dig a hole right now through the the earth you would eventually hit sky.

So? We have satellites that take pictures of this all the time. That the Earth is round is pretty well documented. Do you think these pictures are all generated only by NASA? I’m sure SpaceX has a couple.

hqdefault

>4. The Earths diameter is 7917 miles which means there is someone standing upside down in relation to you less that 8 thousand miles away right now, yet you are both unaware of it.

So? Would you be aware of someone 8,000 miles away if they were standing next to you instead of below you? I would wager not.

>5. Water can be shown to always find it’s level except on a planetary scale. Which means there is a wall of water 13000 statue of liberty’s high between California and Hawaii and only magical gravity keeps it from flooding the United States mainland.

Now you’re just being stupid. Gravity pulls downward locally, which is a different direction at Hawaii from the direction at Los Angeles. This is the nature of the solution of gravity from a sphere. Toward the center of the sphere!

>6. The nearest star is 25 trillion miles away which is why we never see parallax. Or have to explain parallax.

Parallax has been used to fairly accurately calculate the distance to the moon and the sun. It’s also been used to estimate distances to near stars. Why in the world have you included this point? In fact, the way parallax is used to calculate stellar distances really kind of harpoons your whole argument.

>7. The Chicago Skyline, from the opposite side of lake Michigan 60 miles away, is a mirage as the tallest building there should not be visible behind the earths curve. Yet it has been seen and photographed time and again.

Optical effect. Same thing as the green flash seen at the surface of the ocean when the sun goes down. Light is known to not always travel in straight lines and the conditions when it doesn’t are pretty completely understood. There’s even a name for the kind of mirage that lets you see Chicago from across the great lake: the Superior Mirage. Or, do you actually believe you’re seeing the sky below the road when you see a mirage on a hot day?

superior_mirage_weather_doctor

>8. The Coriolis effect has no effect on airplanes, yet is said to have an effect on munitions.

Dude, learn something about the Coriolis force. Munitions are unpowered while airplanes can continuously exert an acceleration. Of course Coriolis force must be corrected for to fly an airplane, but the airplane can actively maneuver throughout its flight to compensate.

>9. Firing a gun or cannon east or west will not be helped or hindered by the apparent rotation of 1000 miles/hour which means the Coriolis effect can be selective.

Flat out False: NASA launches rockets toward the east in order to take advantage of the surface velocity of the Earth to help reach orbit with less fuel. Further, Kennedy Space Center and Cape Canaveral were built in Florida in order to place them at the location in the continental United States that gives the greatest rotational kick during the rocket launch (closest to the Equator). They don’t need as big of rockets when they use Coriolis force in this way. You really should bother to learn some physics. It would surprise you to know that the Earth bulges away from spherical by something like 20 miles at the equator because of centrifugal force (How do they know this? GPS, dude.)

Moreover, if you’re using the GPS on your smartphone to travel anywhere, and you are espousing this sort of nonsense, you’re the biggest hypocrite alive.

>10. Gravity is strong enough to keep you and everything you see firmly stuck to the earth, yet birds and insects seem completely unaware as to the 1000 miles/hour rotation and have no trouble over coming gravity.

Bernoulli force, dude. You’re not impressing me. Do you think the wind should somehow be whipping past at 1000 miles/hour, as if the atmosphere was unhinged from the surface of the planet? Again, within the local frame of reference, the only acceleration you feel is along the direction of gravity and you can’t discriminate centrifugal force from gravity without a gravitometer. Further, the atmosphere is fairly tightly bound to the surface of the planet and mostly travels with the Earth as it rotates: in order to see effects of the Coriolis ‘force,’ you need to have a definite velocity and relatively little friction with the atmosphere. An object the size of a bird gets carried along by the atmosphere, which is interacting strongly with the surface on the scale of many miles.

>11. The wobble of the planet tilts sections of the equator to 45 degrees at distances that normally would be occupied by arctic tundra. Yet those same sections never form glaciers.

The tilt of the Earth is not the only factor determining the climate of regions on the surface. We have huge oceans that act as giant circulating heat sinks that move heat to places that might not otherwise receive light. Feel the wind? That moves heat too.

Moreover, the tilt of the earth is only ever 23 degrees from the plane of the ecliptic. This 45 degrees garbage is the full swing from extreme north to extreme south passage of the sun at the apex of the local sky during the solstices. The arctic circle is 66 degrees from the equator and the angular distance between arctic and antarctic circles is about 130 degrees. You have wildly expanded an angle somewhere.

>12. The moon takes the same path through the night sky each night in a 29.5 day cycle yet the shadows cast by moon phases would seem to suggest that the moon is not taking the same path through the night sky each night.

Rotation of the Earth, dude. Did you know that the moon actually travels in a west to east direction around the Earth? I’ll bet you didn’t. As the moon orbits, roughly 1/29th of its orbit around the Earth per day, the time when it rises during the day is displaced by 1/29th of the Earth’s day-long rotation cycle. Why do you think the moon never quite rises at the same time? It rises about 50 minutes later than it did the day before every single day.

>13. The summer solstice and winter equinox should completely flip our high noon and midnight with each 6 month rotation, but does not some how.

This is because you’re misunderstanding something about the travel of the earth around the sun: there is exactly no set period relation between the earth’s rotation and its revolution around the sun. The period of the year is only approximately 365 days… it’s actually 11 minutes and 14 seconds less than 365.25 days. In the case of the Earth, there is no reason to set an integer relationship between the number of rotations the planet makes and how many of those add up to a year. This is why we need leap year. The shift of daylight by the mechanism you’re talking about simply adds into our timing systems, which are totally independent from the period of the solar cycle. We have an agreed-upon ‘day long’ increment that we measure using atomic clocks and then we shift our calendars as necessary to correct for the drift of these ‘day’ increments against the non-integral period of the year.

One thing that does flip by 180 degrees every half year is the star constellations visible in the sky at night. Gee, I wonder why that is…

>14. The South pole has a ceremonial pole and you cannot go past there and are not allowed to visit it. You should never question as to why.

This is kind of an excessively stupid point, even for the quality of points on this list. I don’t understand why you left it freestanding. Don’t ya know: it’s the Man lording it over, keeping you from your right to visit the south pole, whenever you feel the urge to just hop on your skateboard and flip an Ollie.

>15. The oldest treaty in the world is the antarctic treaty of 1959, the same year NASA was started. The treaty prevents anyone from going to Antarctica without government approval from one of the treaty signers.

Something tells me you aren’t that familiar with international politics if you think a treaty signed in 1959 is the oldest in the world. Maybe this treaty exists because the Antarctic is such a difficult place to travel to and live in that it’s hard for anybody to just up and go. Did you ever wonder why it wasn’t until the 20th century that governments even bothered to decide who could lay claim to the Antarctic at all? If it were an issue of walking across the street, maybe you could visit. So, talk to Elon Musk and ask him to build you a hotel. Otherwise, pretty much the only entities that can afford to go and stay in Antarctica and pack in and out the food, water and expendables necessary to survive there are governments. If you use their facilities, you work within their rules.

Yeah, kind of snarky, but what can I say. These people do sometimes bring it out of me.

This sort of comment has a way of riling me up because it is incredibly clear that the person writing it has basically no idea what they’re talking about, yet they are smugly certain that they have the truth of it, as if his little observations should blow my mind. As a general note, if you have a C- to D+ understanding of the world around you, there is usually a passing good chance that anything you think you intuitively know is probably false. Paraphrasing Neil deGrasse Tyson, Nature is under no obligation to humanity to be easily understandable.

 

edit 11-9-17

I’ve spent some time looking at more comprehensive lists of Flat Earther arguments. You may or may not have heard of it, but there’s a 200 point list that circulates now and then. “Two hundred proofs in favor of a flat earth,” or so they claim. I’ve said this elsewhere, but you can’t argue with a Flat Earther; they are so invested in a bad idea that there is no way of digging them out.

If you dig around in their arguments, you may note that there are really two fundamental critical failures that Flat Earthers make. Well, they make a lot of mistakes on how they handle facts, but there are two deep underlying failures that give rise to everything else they fail on. These are the failures.

1.) Flat Earthers rarely (or never) perform validation tests to check whether or not they even understand what their opposition is arguing for. This is the process of testing yourself to see if you are competent enough to handle the information you are arguing against. How do you knock down an opponent’s argument if you don’t understand it? Maybe the reason the notion of a round earth makes no sense to you is because you actually don’t really understand the claim. (An example: Terrence Howard thinks “math is wrong” because it doesn’t make sense that 2+2=4 and 2×2=4, and yet 3+3=6 and 3×3 does not. Terrence Howard fails to realize that the fault is in himself rather than in the math… that math is performed in a certain way regardless of what you think about it is why it works! If you don’t perform it in the same way as everyone else, using the shared rules, then there’s no reason why somebody else should reproduce your results.)

2.) Flat Earthers rarely (or never) offer a standard of falsification for discarding an idea. What would convince you that the idea you’re proposing is actually wrong? Flat Earth arguments usually take on the cast of a conspiratorial listing of all the weird things which seem to be wrong with the round earth model (usually these lists of points show a generous helping of point #1… that the Flat Earther didn’t understand a point to begin with), but Flat Earthers rarely offer any effective models of what they think the Earth actually is in order to go out and test whether their model works. Poking holes in the other guy’s model is pointless if you have nothing to offer which fits the facts better. That Flat Earthers fail at this should be clear to anybody seeking to carry out point #1, that is, seeking to clarify if you (as a round earth believer) understand the flat earther argument well enough to articulate whether or not it is right or wrong (yeah, I delved into 200 point list of flat earth proofs to see if I understood them.) Flat Earthers never offer a model of the flat earth that they truly go out and try to test; they only look for what they believe are holes in the round Earth model. They look for that one point, “Aha, you see, you see???”

Now, I said that you can’t argue with a Flat Earther, so why do these failings matter? I think that they matter because I look for them in myself. If I don’t understand an argument, how do I argue against it? Also, if I don’t have a standard expectation for why I would change my mind about something, why should I hold a stance? It’s a self diagnostic for human failings, checking that the inner universe of my brain matches the external universe that my body inhabits. I think that not making these self-tests is a big part of why there’s strife in the world today!

Further, you may not realize it, but much of the work posted on this blog is me attacking point #1 and point #2 in myself. Do I understand this or that well enough to have an opinion? Some things that I want to have opinions about are crazy hard to understand, so I work at it.