You no doubt heard about this fellow in the last week with the steampunk rocket with “Flat Earth Research” written on the side. In my opinion, he was pretty clearly trolling the media; not much likelihood of resolving any issues about the shape of the Earth if the peak altitude of your rocket is only a fraction of the altitude of a commercial airline jet. He said a number of antiscience things and sort of repurposed mathematical formulae for aeronautics and fluid mechanics as “not science” as if physics is anything other than physics. The guy claimed he was using the flight as a test bed for a bigger rocket and wanted to create a media circus to announce his run for a seat in the California legislature. Not bad for a limo driver, I give him that.

Further in the background, I think it’s clear he was just after a publicity stunt; his do-it-yourself rocket cost a great deal of money, and his conversion to flat eartherism obviously helped to pay the bill. It really did make me wonder what exactly flat earthers think “research” is given that they were apparently willing to pony up a ton of money for this rocket, which won’t go high enough to resolve anything an airline ticket won’t resolve better.

My general feelings about flat earth nonsense are well recorded here and here.

A part of why I decided to write anything about this is that the guy wants to run for congress in California. This should be concerning to everyone: someone who is trusted to make decisions for a whole community had better be doing so based on a sound understanding of reality. Higher positions currently filled in the Federal government not withstanding, a disconnect seems to be forming in our self-governance which is allowing people to unhinge their decision-making processes from what is actually known about the world. I think that’s profoundly dangerous.

In my opinion also, this is not to heap blame on those who actually hold office now, but on everybody who elected to put them there. Our government is both by the people and for the people: anybody in power is at some level representative of the electorate, possessing all the same potentially fatal flaws. If you want to bitch about the government, the place to start is society itself.

Now, Flat Eartherism is one of those pastimes that is truly incredibly past its time. There are two reasons it subsists; the first is people trolling other people for kicks online, while the second is that some people are so distrusting and conspiracy-minded that they’re willing to believe just about anything if it feeds into their biases. There are some people who truly believe it. A part of why people have the ability to believe the conspiracy theories is that what they consider visual evidence of the Earth’s roundness comes through sources that they define as questionable because of their connection to ostensibly corrupt power –NASA, for all its earnest effort to keep space science accessible to the common man, has not been perfect. Further, not just anybody can go to a place where the roundness of the Earth is unambiguously visible given exactly how hard it is to get to very high altitudes over Earth in the first place. For all of SpaceX’s success, space flight still isn’t a commodity that everyone can sample. Travel into space is held under lock and key by the few and powerful.

Knowing and having worked a bit around scientists associated with space flight projects, I understand the mindset of the scientists, and it offends me very deeply to see their trustworthiness questioned when I know that many of them value honesty very highly. Part of why the conspiracy garbage circulates at all is because our society is so big that “these people” never meet “those people” and the two sides have little chance of bumping into one another. It’s easy to malign people who are faceless and its really easy to accuse someone of lying if they aren’t present to defend themselves. That doesn’t mean that either is due. This comes back to my old argument about the constitutionally defended right to spout lies in the form of “Freedom of Speech” being a very dangerous social norm.

Now, that said, another of the primary reasons I decided to write this post is because I saw a Youtube video of Eddie Bravo facing down two scientists and more or less humiliating them over their inability to defend “round eartherism.”

You may or may not know of him, but Eddie Bravo is a modern hero to the teenage boy; he’s another of these podcaster/micro-celebrity types who is widely accessible with a few keystrokes in an environment with basically zero editorial content control. He’s a visible face of the UFC (Ultimate Fighting Challenge) movement along with Joe Rogan. He’s attained wide acclaim for being a “Gracie Killer,” which is a big thing if you know anything about UFC… the Gracies being the renown Brazilian Jiu-Jutsu family who dominated the grappling world early in the UFC and brought the art of Jiu-Jutsu in its Brazilian form to the whole world. From this little history, you can easily guess why Bravo is a teenage boy hero: he’s a brash, cocky bad ass. He’s a world class Jiu-Jutsu fighter, hands down. Unfortunately, as with many celebrities, his Jiu-Jutsu street cred affords him the opportunity to open his mouth about whatever he feels like. Turns out he’s a bit of a crank magnet too, including being a flat earther.

To begin with, I don’t believe Mr. Bravo –or any other crank, for that matter– is stupid. I’ve long since seen that great intelligence can exist in people who for one reason or another don’t know better or choose not to “believe” in something for whatever reason. If he weren’t talented at some level, he wouldn’t be a hard enough worker to develop the acclaim he has attained. But, he conflates being able to shout over whoever he feels like to being able to beat them, which absolutely isn’t true in an intellectual debate.

In the Youtube clip I saw, Mr. Bravo confronts two scientists in a room full of people friendly to him. The first scientist is brought to the forefront where he introduces himself as an “Earth Scientist”… much to the rolling eyes and derision of the audience. Eddie Bravo then demands that he give the one bit of evidence which proves that the “Earth is round.” Put on the spot, this poor fellow then makes the mistake of trying to tell Mr. Bravo that science is a group of people who specialize in many different disciplines, across many different lines of research, and fails to provide Mr. Bravo with a direct answer to his question. It’s true that science is distributed, but by not answering the question, he gives the appearance of not having the answer and Eddie Bravo was completely aware that he’d said nothing to the point! When the second scientist comes forward, Eddie Bravo demands (a poorly worded demand at that, in my opinion) that since most people hold the disappearance of a ship’s mast over the horizon as the “proof” that the world is round, “why was it that people are able to take pictures of ships after they’re supposedly over the horizon?” This second scientist really did step up, I think: he tried to explain that light doesn’t necessarily travel in straight lines (which is true) and that the atmosphere can work like a fiber optic to bring images around the curve of the earth. Mr. Bravo derided this explanation, basically saying “Oh, please, that’s garbage, everybody knows you can’t see around corners.” And, at a superficial level, this will be regarded as a true response, despite the fact that the numbers always fall out the bottom of the strainer in a rhetorical confrontation. The second scientist ended up sounding like he was talking over everybody’s head with his too intricate explanation, and Eddie Bravo was able to use that to make him out as “other,” winning the popular argument at that point. Combine these incidents with a lot of shouting over the other guy, and Eddie Bravo came off well…. the video is listed as a “debate,” never mind that it was anything but.

If you are a science educator, I would recommend watching that video. Scientist #1 comes off as stupid and scientist #2 comes off as pompous.

You’ll love me for saying this, but that was all preface to the purpose of this blog post. Most modern flat earthers are Youtube trolls; they castrate their opposition by relying on the fact that evidence of the Earth’s roundness is provided by a source that is intrinsically tainted and questionable. And, the truth is that many people who believe the Earth is round really only understand this fact based on a line of evidence that people like Eddie Bravo will not accept. How do you straighten out a guy who will not accept the satellite images?

Well, how is it that we know the earth is round? We knew it before there were satellites, computer graphics and photoshop. With globalism and information society, these knowable, observable things are amplified. Flat earthers prove they are incompetent researchers every time they open their mouths and say “Well, have you researched it? I did and the earth is flat!”

Now, suppose I was a flat earth researcher, how would I go about the science of establishing the shape of the earth using a series of modern, readily available, cheap tools?

Hypothesis: The Earth is flat! It’s the stable, unmoving center of the universe and the sun and sky move over it.

1 flat earth model

One thing that we can immediately see about this model is a simple thing. When the sun is in the sky, every point on the plane can see it at the same time since there is nothing to obstruct the line of sight anywhere. In the 1800s, nobody could really travel fast enough to be able to tell whether or not this was the case: for every person in that time, it was enough to suppose that everybody on Earth wakes up from the night at the same time and goes about their day. For this flat earth modeled when seen from the side, the phenomenon of sunrise (a phenomenon as old as the beginning of the Earth, by the way) would look like this:

2 simple sunrise model

We have all seen this: the sun starts below the edge of the Eastern Horizon and pops up above it. For a majority of people on Earth, this is what the sun seems to do in the morning.

There are a number of simple tests of this model, but the simplest question to ask is this: Does everybody on Earth see the sun appear at the same time? Everybody is standing on that flat plane: when the sun comes up from below the horizon, does everybody on Earth see it at once?

3 simple sunrise model at sunrise

Notice, this is a requirement: if the Earth is flat, people all across the plane of the Earth will be able to see something big coming over the edge of that plane almost simultaneously, depending on nearby impediments, like mountains for instance.

So, here’s the experiment! If you live in California, grab your smart phone, buy an airplane ticket and fly to New York. The government has no control at all over where you fly in the continental US of A and they really won’t care if you take this trip. New York, New York is actually a kind of fun place to visit, so I recommend going and maybe catching a Broadway show while you’re there. When you get to New York, find someplace along the waterline where you can look east over the ocean and go there in the morning before sunrise. After the sun rises, wait 30 minutes and then place a phone call back to one of your buddies in California and ask him if the sun is up.

This experiment can be repeated with any two east-west related locations on Earth, though the time delays will depend on the separation so that maybe a half hour is long enough for the sun to rise in both places. Any real flat earth “researcher” should be running this experiment.

For the set-up written above, the sun comes up in New York four hours before it actually comes up in California! A California view of the sun is blocked below the horizon of the Earth for four hours after it has become visible in New York.

Now, you might argue, New York is on the east side of the US and is much closer to where the sun comes up on our hypothetical plane, so maybe the Rocky Mountains are obstructing some view of the sun in LA.

4 mountain occlusion

And that this blocking effect lasts 4 hours.

So, here’s the new experiment. Drive your car from LA to NY and watch the odometer; you can even get a mechanic you trust to assure you that the government hasn’t fiddled with it. You now know the approximate distance from LA to NY by the odometer read-out. Next, you buy a barometer and use the pressure change of the air to measure how high the Rocky Mountains are… or, you could just use a surveying scope to measure the angular height of the mountains and your car to check distances, then work a bit of trig to estimate the height of the mountains.

5 measure mountain height

The Rockies are well understood to be just a bit taller than 14,000 ft.

With these distances available, you do the following experiment with surveying scopes. When the sun appears above the horizon in LA, your friend measures the angle above ground level where it is visible (surveying scopes have bubble levels for leveling the scope). You measure the angle above the horizon at the same time using a survey scope of your own in New York. Remember, you’ve got smartphones, you can talk to each other and coordinate these measurements.

For the flat earth, the position of the sun in the sky should obey the following simple triangular model:

6 flat earth trig model

This technique is as old as the hills and is called “triangulation.” Notice, I’ve used three measurements made with cheap modern equipment: angle at LA, angle at NY and the distance from LA to NY (approximate from the odometer). What I have in hand from this is the ability to determine the approximate altitude of the sun using a bit of high school level trig. Use law of sines and it’s easy to forecast the altitude of the sun from these measurements:

7 height of sun

I won’t do the derivation this once, but you just plug in the distance and the angles, then voila, the height of the sun over the flat earth. (I’m not being snide here: Flat Earthers don’t even seem to try to use trig.)

What we know so far is that the sun comes up four hours earlier in New York than LA and that we would expect that the sun should be visible everywhere on the flat earth at the same time as it comes over the horizon. Maybe the Rockies are blocking LA from seeing the sun for four hours. This would give rise to the following situation:

9 mountain triangle

You end up with similar triangles formed by the triangle of LA to the Rocky Mountains and the triangle of LA to the sun. Knowing the height of the mountains and the distance from LA to the mountains, you get the angle that the sun must be at when it appears in LA. This gives us a relation where the angle from LA to the top of the mountains must be the same as the angle from LA to the sun when it appears. We would expect the angle to be very small since the Rockies are really not that high, so finding it nearly zero to within the noise of the instrument would be expected.

Now, LA to New York is about 2,800 miles and the distance from LA to Denver is 1,020 miles. The mountains are 14,000 feet tall. In four hours of morning, from New York, the sun will appear to be at an angle of ~60 degrees over the horizon (neglecting latitude effects… leave that for later). If you start plugging these figures into equations, the altitude of the sun must be 7.3 miles up in the sky, or 38,500 ft.

Huh.

You can fly at 40,000 ft in an airliner. Easy hypothesis to test. If the sun is only 7.3 miles up and visible at 60 degrees inclination in New York, you could go fly around it with an airplane.

Has anybody ever done that?

A good scientist would keep looking at the sun through the whole day and might notice that the angular difference of the sun’s inclination observed in the spotting scopes at New York and in LA does not change. Both inclinations increase at the same rate. There is always something like 60 degree difference in inclination in the sky from where the sun rose between these two places (again, neglecting latitude effects; this argument will appear a tiny bit janky since New York and Los Angeles are not at the same latitude, but the effect should be very close to what I described).

For this flat earth model to be true, the sun would need to radically and aphysically change altitude from one part of the day to the next in order for the reported angles to be real. We know with pretty good accuracy that the sun does not just pop out of the Atlantic ocean several dozen miles off the coast every morning when it rises over the United States, whatever the flat earthers want to tell you. And, this is pretty much observable without any NASA satellites. Grab yourself a boat and go see! The other possibility is that the sun is much further away than 7 miles and that the physical obstruction between LA and New York is much larger than just the height the Rocky Mountains over sea level –and also maybe that the angles on the levels of the spotting scopes somehow don’t agree with each other.

For this alone, the vanilla flat earth model must be discarded. You cannot validate any of the predictions in the model above: LA and New York do not see the sunrise at the same time and the sun clearly is not only 7 miles high in New York. To give them some credit, most modern flat earthers, including Eddie Bravo, do not subscribe directly to this model.

For a point, I would mention that every flat earth model struggles with the observable phenomenon of time zones and jet lag. If any flat earther ever asks you what convinced you of a round Earth, just say “Time Zones” in order to forestall him or her and to not look like you’re avoiding the question. Generally speaking, time zones exist because the curve of the Earth (something that flat earthers claim shouldn’t exist) obstructs the sun from lighting every point on the surface of the Earth at the same time.

So then, now that we’ve made basically two tests of a flat earther hypothesis and seen that it fails rather dramatically in the face of simple modern do-it-yourself measurements, what model do these people actually believe in?

flat_earther_believers_explain_their_theory_on_australien_television__234804

Most modern flat earthers believe in some version of the model above (one of the major purveyors of this is Eric Dubay. I won’t link his site because I won’t give him traffic.) In this model, you can think about the Earth as a big disc centered on an axle that passes through the north pole. The sun, the moon and the night sky spin around this axle over the Earth (or maybe the Earth spins like a record beneath the sky). The southern tips of South America, Africa and Australia are placed at extreme distances from one another and Antarctica is expanded into an ice wall that surrounds the whole disc. The model here is actually not a new one and originated some time in the 1800s.

For the image depicted here, I would point out once again that if the sun is an emissive sphere, projecting light in all directions, the model above gives a clear line of sight for every location on Earth to see the sun at all times. For this reason, the flat earthers usually insist that the sun is more like a flashlight or a street lamp which projects light in a preferred direction so that light from it can’t be seen at locations other than where the light is being projected (never mind that this prospect immediately begins to suffer for trying to generate the appropriate phases of the moon).

To generate this model, the flat earthers have actually cherry-picked a few rather interesting observations about the sky. You can find a Youtube video where Eddie Bravo tries to articulate these observations to Joe Rogan. Central among them is that the North Star, Polaris, seems to not move in the night sky and that all the stars and even the sun seem to pivot around this point. In particular, during the season of white nights above the arctic circle, the sun seems to travel around the horizon without really setting (never mind that during the winter months, the sun disappears below the horizon for weeks on end… again with that pesky horizon thing; on the flat earth, the sun is not allowed to drop below the horizon and still be visible elsewhere on the same longitude since that intrinsically implies that the Earth’s surface must curve to accomplish said feat).

sun-path-arctic-circle-large

Taken from Scijinks.gov, this image demonstrates the real observation of what the sun does during the season of white nights as viewed at the arctic circle. The flat earth model amplifies this into the depiction given above.

If this is our hypothetical model, we could say that the sun is suspended over the flat Earth so that it sits on a ring at the radius of the equator in its revolution around the pole.

10 disc model

This image shows you right away the first thing to test. As seen at a distance of 3/4 of the disc’s diameter away, the sun cannot ever be seen in the sky at a lower angle of inclination than is allowed by its altitude over the surface. In other words, it can never go down below the horizon or come up over it.

11 min angle of inclination

Here, theta is the minimum angle of inclination that the sun will visit in the sky. I’ve heard flat earthers quote ~3,000 miles for the height of the sun and the absolute length of the longitude would be (3/4)*24,000 miles = 18,000 miles, which gives a minimum inclination angle of about 9 degrees over the horizon. And, that’s seen from the maximum possible distance across the width of the disc, where the flat earthers claim the sunlight can’t be seen. As a result, the sun will always have to *appear* in the sky at some inclination greater than 9 degrees –just suddenly start making light– at the time when the sun supposedly rises.

The truth of that is directly observable: do you ever see the sun just appear in the sky when day breaks? I certainly haven’t.

This failure to ever reach the horizon mixed with the requirement for time zones is enough to kill the flat earth model above: it can’t produce the observations available from the world around us that can be obtained with just the tiniest bit of leg work! The model can’t handle sunrises (period). There’s a reason that the round earth was postulated in 2,500 BC; it’s based on a series of clever but damn easy measurements. And I reiterate, those measurements are easier to make with modern technology.

It is inevitable that this logic won’t satisfy someone. The altitude number for the sun, 3,000 miles, was cribbed from flat earth chatter. Suppose that this number is actually different and that they don’t actually know what it is (surprise, surprise, I don’t think I’ve ever seen evidence of any one of them doing something other than making YouTube videos or staring through big cameras trying to see ships disappear over the horizon and not understanding why they don’t. Time to get to work, guys, you need to measure the altitude of the sun over the flat earth or you’ll all just keep looking like a bunch of dumbasses staring at tea leaves!)

Now, then, in some attempt to justify this model, a measurement needs to be made of the altitude of the sun (again). You can do it basically in the same way you did it before; you mark out a base length along the surface of the Earth and station two guys with surveying scopes at either end: you count “1,2,3” over the smartphone and then both of you report the angle you measure for the inclination of the sun. In this case, I recommend that one guy be stationed south of the equator and the other guy stationed north, both off the equator by the same distance along a longitude line. The measurement should be made on either the Vernal or Autumnal equinox and it should be made at noon during the day when the sun is at its highest point in the sky. This should make calculations easier by producing an isosceles triangle. How do you know you’re on the same longitude line? The sun should rise at the same time for both of you on the equinox. And, I specify equinox because I would rather not get into effects caused by the Earth’s axial tilt, like the significance of the tropics of Cancer and Capricorn (you want to know about those, go learn about them yourself).

12 height of sun ver 2

From this measurement how do you get the height of the sun? You use the following piece of very easy trig:

13 trig height

And, note, this trig will not work unless both angles measured above are the same… but you can orchestrate this with a couple spotters, an accurate clock and a couple surveying scopes.

If you do this very close to the equator, where d is small, you will find that the sun is at some crazily high altitude. You may not be able to distinguish it because of the sizeable angular width of the sun, but it will be very high… in the millions of miles. This by itself will push the minimum allowed angular height of the sun up, not down, because it’s larger than what was taken for the calculation above. To handle the horizon problem where the sun can only appear to be higher than about 9 degrees in the sky and never cross the horizon, the height of the sun must be lower than 3,000 miles, not higher. Humans were unable to do this calculation in prehistory and used a different set of triangles to try to estimate the height of the sun.

If you are a good scientist, you will repeat this measurement a number of times with different base distances between the spotters. If the Earth is flat, every base length you choose between the spotters should produce the same height for the sun (this is an example of the scientific concept of Replication).

Here’s what you will actually find:

14 three measurements

At a latitude close to the equator, during the first measurement, the sun will appear to be very far away at a really high altitude. With the second measurement, at mid latitudes on either side of the equator, the sun will appear to be at a significantly lower altitude. During the final measurement, at distant latitudes, as far north and south as you can get, the sun will appear to actually sit down on the face of the Earth. If you coordinate this experiment with six people on group chat all at once, this is what they will all see simultaneously. Could I coordinate the measurement locations so that the sun appears to be 3,000 miles high? Sure, but who in the hell would ever take that as honest? Flat earthers blame scientists for being dishonest… what if the flat earthers are the ones being dishonest? Does it not count for them somehow?

Since the sun suddenly appears to be speeding toward the Earth, does this mean that it’s about to crash down onto the experimenters you have stationed at the equator? No. It just means that your model is completely wrong because it hasn’t produced a self-consistent measurement. A mature scientist would consider the flat earth a dead hypothesis at this point.

Why does the round earth manage to succeed at explaining this series of observations? For one thing, the round earth doesn’t assume that the spotting scopes are stationed at the same angular level.

15 round earth contrast

The leveling bubble on the spotting scope can only assume the local level. And, the angle that you end up measuring is the one between the local horizon and the sight line. On the equinox (very important) the sun will only appear to be directly overhead at noon on the equator.

If you’re still unconvinced that the flat earth is a dead hypothesis which doesn’t live up to testing and continue to focus on strange mirages seen over the surface of the ocean on warm days as evidence that the round earth can’t be right, consider the following observations.

Flat earthers use Polaris as the pivot around which the sky spins. Why is it that Polaris is not visible in the sky from latitudes south of the equator? Why is it that the Southern Cross star constellation is not visible from the northern hemisphere? Eddie Bravo, as a Gracie hunter, surely must have visited Brazil: did he ever go outside and look for the north star during a visit? Pending that, did he look for the Southern Cross from Las Vegas?

Flat earthers use the observation that the stars in the sky rotate counterclockwise around Polaris as evidence that the sky is rotating around the disc of the Earth. Have they ever gone and observed at night from the tip of Argentina in South America that the sky seems to rotate clockwise around some axis to the south? How can the sky rotate both clockwise and counterclockwise at the same time? In the flat earth model, it can’t, but in reality, it does! As an extension, why in the hell does the sun come straight up from the east and set straight in the west on equinox at the equator? When seen at the North Pole, on equinox day, simultaneously, the sun rolls around the horizon at the level of the ground and never quite rises. Use your smartphone and take the trip to see! Send a friend to Panama while you go to Juneau Alaska and talk on the smartphone to see that it happens this way in both places at once.

Don’t take my word for it, go and make the observations yourself!

How is this all possible?

I’ll tell you why.

It’s because flat earthers never test the models they put forward with the tools that are at their flipping fingertips. “Flat Earth ‘Research'” my ass.

Do I need NASA satellite pictures or rocket launches to know that the Earth is round? Pardon my french, but Fucking hell, no! Give me the combination of time zones with the fact that the sun actually pops up over the horizon when it rises and your ass is grass. Flat earth models can’t explain these observations simultaneously, they can only do one or the other.

Edit 11-28-17

Yeah, I have a tiny bit more to say.

If all of what I’ve said still does not convince you, likely you’re hopeless. But, here’s a comparison between what the sun does in the sky over the disc shaped flat earth and what it actually does.

Here’s how the sun travels across the sky on the disc-shaped earth:

16 flat earth sun track

Here’s what the sun really does depending on latitude:

17 earth sun track

This particular set of sun behaviors in the sky is actually visible year round, but the latitude where the sun travels from East, straight over the apex, to West varies North to South depending on the season when you look. At equinox, the observation is symmetric at the equator, but it shifts north and south of there as the months move on, producing the same general pattern above. In the winter, the axial tilt of the Earth prevents the sun from rising over the north pole –ever– while the same is true at the south pole during the summer of the northern hemisphere. Flat earthers seem to never make any observations about what happens in the sky to the sun south of the equator. Do they not go to Australia or South America to take a look?

As an extra, I have made the mistake of rooting through Eric Dubay’s “200 proofs” gallop. I once even thought about writing a blog post about the experience, but decided it was too exhausting. For one thing, quantity does not assure quality. Many of the 200 proofs are taken from accounts of 19th century navigation errors, and one must wonder whether such accounts hold as valid in the 21st century world. Further, some of the proofs are simple, flat out lies: among the proofs is an exhaustive observation of the lack of airline flight routes in the southern hemisphere, twisting route information to show that flights must pass through the northern hemisphere to reach destinations as far separated as the tip of South America and the tip of South Africa, which simply ignores the fact that flight routes exist for these destinations that do not go to the northern hemisphere. Are there more flight routes in the Northern hemisphere than in the southern hemisphere? Yes, most of the human population lives at or north of the equator… most of the places anybody would want to go are in the northern hemisphere. If you doubt that such a flight route exists, go to the Southern hemisphere and take an airline flight from Argentina to South Africa and use a stopwatch during the flight to see if it’s a fraction of the length Dubay would claim –commerical airline jets have a known flight profile that would be impossible to hide; the rate at which they cross distance is well-characterized. Did Dubay do this experiment? Nope. What should stun a person about Dubay is that he does not merely make wrong claims, it’s that he repeats the same wrong claims 60 times in a row to an audience that not only fawns over it, but fails to point out the giant logical gaps that are detailed above. How hard is it to see that you not only need to cope with time zones, but with sunrises too?

Pointing out a tiny detail, like not understanding how mirages work on the surface of the ocean, does not somehow validate a model that can’t handle the big ticket items, like time zones and sunrises. It only shows that you can’t understand how the small details work. I can also sort of understand that people are losing touch with the world around them as they grow more and more entrenched in the online world, but if you fail to understand that the online world does not dictate the physics of the real world, you are in big trouble.

(Edit 3-26-18:)

The steam rocket dude finally shot himself 1,800 ft into the air. Oh yeah, and “flat earth and stuff.” Tell me again how his little stunt was supposed to test anything. His interest was in launching himself in a steam powered rocket, it had nothing to do with finding out the roundness (or lack thereof) of the Earth.

If you vote for him for Governor, you deserve what you get.

For anybody actually interested in a test that did something, check this out. For the record, there are aberrations to the lenses here which do effect exactly what you see along the edges of the image, but ask yourself how the rocket can appear straight while the background appears curved. Further, if you doubt it, that test is something that can be done by someone with the limo driver’s means.

Edit, 1-21-19:

Another observable that suggests the roundness of the Earth. If you see a blood moon, a lunar eclipse, you’ll note that the shadow of the Earth appears round as it crosses the face of the moon. It’s round when the moon is at any inclination during the eclipse. If the Earth were flat, it would be different shapes at the different inclinations because the eclipse would be with respect to different aspects of the non-spherical Earth’s shadow… and this doesn’t happen.

I hope you saw the eclipse last night!

Published by foolish physicist

Low level academic enthralled with learning how things work.

Leave a comment

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: