I haven’t written about my problem play for a while. Since last I wrote about rotational problems, I’ve gone through the entire Sakurai chapter 4, which is an introduction to symmetry. At the moment, I’m reading Chapter 5 while still thinking about some of the last few problems in Chapter 4.

I admit that I had a great deal of trouble getting motivated to attack the Chapter 4 problems. When I saw the first aspects of symmetry in class, I just did not particularly understand it. Coming back to it on my own was not much better. Abstract symmetry is not easy to understand.

In Sakurai chapter 4, the text delves into a few different symmetries that are important to quantum mechanics and pretty much all of them are difficult to see at first. As it turns out, some of these symmetries are very powerful tools. For example, use of the reflection symmetry operation in a chiral molecule (like the C-alpha carbon of proteins or the hydrated carbons of sugars) can reveal neighboring degenerate ground states which can be accessed by racemization, where an atomic substituent of the molecule tunnels through the plane of the molecule and reverses the chirality of the state at some infrequent rate. Another example is translation symmetry operation, where a lattice of identical attractive potentials serves to hide a near infinite number of identical states where a bound particle can hop from one minimum to the next and traverse the lattice… this behavior essentially a specific model describing the passage of electrons through a crystalline semiconductor.

One of the harder symmetries was time reversal symmetry. I shouldn’t say “one of the harder;” for me time reversal was the hardest to understand and I would be hesitant to say that I completely understand it yet. Time reversal operator causes time to translate backward, making momenta and angular momenta reverse. Time reversal is really hard because the operator is anti-unitary, meaning that the operation switches the sign on complex quantities that it operates on. Nevertheless, time reversal has some interesting outcomes. For instance, if a spinless particle is bound to a fixed center where the state in question is not degenerate (Only one state at the given energy), time reversal says that the state can have no average angular momentum (it can’t be rotating or orbiting). On the other hand, if the particle has spin, the bound state must be degenerate because the particle can’t have no angular momentum!

A quick digression here for the laymen: in quantum mechanics, the word “degenerate” is used to refer to situations where multiple states lie on top of one another and are indistinguishable. Degeneracy is very important in quantum mechanics because certain situations contain only enough information to know an incomplete picture of the model where more information is needed to distinguish alternative answers… coexisting alternatives subsist in superposition, meaning that a wave function is in a superposition of its degenerate alternative outcomes if there is no way to distinguish among them. This is part of how entanglement arises: you can generate entanglement by creating a situation where discrete parts of the system simultaneously occupy degenerate states encompassing the *whole system*. The discrete parts become entangled.

Symmetry is important because it provides a powerful tool by which to break apart degeneracy. A set of degenerate states can often be distinguished from one another by exploiting the symmetries present in the system. L- and R- enantiomers in a molecule are related by a reflection symmetry at a stereo center, meaning that there are two states of indistinguishable energy that are reflections of one another. People don’t often notice it, but chemists are masters of quantum mechanics even though they typically don’t know as much of the math: how you build molecules is totally governed by quantum mechanics and chemists must understand the qualitative results of the physical models. I’ve seen chemists speak competently of symmetry transformations in places where the physicists sometimes have problems.

Another place where symmetry is important is in the search for new physics. The way to discover new physical phenomena is to look for observational results that break the expected symmetries of a given mathematical model. The LHC was built to explore symmetries. Currently known models are said to hold CPT symmetry, referring to Charge, Parity and Time Reversal symmetry… I admit that I don’t understand all the implications of this, but simply put, if you make an observation that violates CPT, you have discovered physics not accounted for by current models.

I held back talking about Parity in all this because I wanted to speak of it in greater detail. Of the symmetries covered in Sakurai chapter 4, I feel that I made the greatest jump in understanding on Parity.

Parity is symmetry under space inversion.

What?

Just saying that sounds diabolical. Space inversion. It sounds like that situation in Harry Potter where somebody screws up trying to disapparate and manages to get splinched… like they space invert themselves and can’t undo it.

The parity operation carries all the cartesian variables in a function to their negative values.

Here Phi just stands in for the parity operator. By performing the parity operation, all the variables in the function which denote spatial position are turned inside out and sent to their negative value. Things get splinched.

You might note here that applying parity twice gets you back to where you started, unsplinching the splinched. This shows that parity operator has the special property that it is it’s own inverse operation. You might understand how special this is by noting that we can’t all literally be our own brother, but the parity operator basically is.

Applying parity twice is like multiplying by 1… which is how you know parity is its own inverse. This also makes parity a unitary operator since it doesn’t effect absolute value of the function. Parity operation times inverse parity is one, so unitary.

or

Here, the daggered superscript means “complex conjugate” which is an automatic requirement for the inverse operation if you’re a unitary operator. Hello linear algebra. Be assured I’m not about the break out the matrices, so have no fear. We will stay in a representation free zone. In this regard, parity operation is very much like a rotation: the inverse operation is the complex conjugate of the operation, never mind the details that the inverse operation is the operation.

Parity symmetry is “symmetry under the parity operation.” There are many states that are not symmetric under parity, but we would be interested in searching particularly for parity operation eigenstates, which are states that parity operator will transform to give back that state times some constant eigenvalue. As it turns out, the parity operator can only ever have two eigenvalues, which are +1 and -1. A parity eigenstate is a state that only changes its sign (or not) when acted on by the parity operator. The parity eigenvalue equations are therefore:

All this says is that under space inversion, the parity eigenstates will either not be affected by the transformation, or will be negative of their original value. If the sign doesn’t change, the state is symmetric under space inversion (called even). But, if the sign does change, the state is antisymmetric under space inversion (called odd). As an example, in a space of one dimension (defined by ‘x’), the function sine is antisymmetric (odd) while the function cosine is symmetric (even).

In this image, taken from a graphing app on my smartphone, the white curve is plain old sine while the blue curve is the parity transformed sine. As mentioned, cosine does not change under parity.

As you may be aware, sines and cosines are energy eigenstates for the particle-in-the-box problem and so would constitute one example of legit parity eigenstates with physical significance.

Operators can also be transformed by parity. In order to see the significance, you just note that the definition of parity is that the position operation is reversed. So, a parity transformation of the position operator is this:

Kind of what should be expected. Position under parity turns negative.

As expressed, all of this is really academic. What’s the point?

Parity can give some insights that have deep significance. The deepest result that I understood is that matrix elements and expectation values will conserve with parity transformation. Matrix elements are a generalization of the expectation value where the bra and ket are not necessarily to the same eigenfunction. The proof of the statement here is one line:

At the end, the squiggles all denote parity transformed values, ‘m’ and ‘n’ are blanket eigenstates with arbitrary parity eigenvalues and V is some miscellaneous operator. First, the complex conjugation that turns a ket into a bra does not affect the parity eigenvalue equation, since parity is its own inverse operation and since the eigenvalues of 1 and -1 are not complex, so the bra above has just the same eigenvalue as if it were a ket. So, the matrix element does not change with the parity transformation –the combined parity transformation of all these parts are as if you just multiplied by identity a couple times, which should do nothing but return the original value.

What makes this important is that it sets a requirement on how many -1 eigenvalues can appear within the parity transformed matrix element (which is equal to the original matrix element): it can never be more than an even number (either zero or two). For the element to exist (that is, for it to have a non-zero value), if the initial and final states connected by the potential are *both* parity odd or parity even, the potential connecting them must be symmetric. Conversely, if the potential is parity odd, either the initial or final state must be odd, while the other is even. To sum up, a parity odd operator has non-zero matrix elements only when connecting states of differing parity while a parity even operator must connect states of the same parity. This restriction is observed simply by noting that the sign can’t change between a matrix element and the parity transformed matrix element.

Now, since an expectation value (average position, for example) is always a matrix element connecting an eigenket to itself, expectation values can only be non-zero for operators of even parity. For example, in a system defined across all space, average position ends up being zero because the position operator is odd, while both eigenbra and eigenket are of the same function, and therefore have the same parity. For average position to be non-zero, the wavefunction would need to be a superposition of eigenkets of opposite parity (and therefore not an eigenstate of parity at all!)

A tangible, far reaching result of this symmetry, related particularly to the position operator, is that no pure eigenstate can have an electric dipole moment. The dipole moment operator is built around the position operator, so a situation where position expectation value goes to zero will require dipole moment to be zero also. Any observed electric dipole moment must be from a mixture of states.

If you stop and think about that, that’s really pretty amazing. It tells you whether an observable is zero or not depending on which eigenkets are present and whether the operator for that observable can be inverted or not.

Hopefully I got that all correct. If anybody more sophisticated than me sees holes in my statement, please speak up!

Welcome to symmetry.

(For the few people who may have noticed, I still have it in mind to write more about the magnets puzzle, but I really haven’t had time recently. Magnets are difficult.)

## One thought on “Parity symmetry in Quantum Mechanics”